Abstract:
In a surface mounting operation for connecting a semiconductor chip and connection component, at least one of the chip or the component has a plurality of elongated pads having a length being greater than the width. The elongated pads are preferably parallel to each other on the chip or component. A solder mask layer may be placed over a selected number of the pads before a bonding operation. The solder mask layer preferably has elongated apertures which are arranged in a perpendicular fashion to the elongated pads. A slight misalignment of the solder mask will not affect the surface area of the pad that shows through the elongated apertures of the solder mask.
Abstract:
A communications connector includes: a dielectric mounting substrate; at least four pairs of conductors mounted on the mounting substrate, each of the conductors including a free end segment, each of the free end segments being positioned in side-by-side and generally parallel relationship; and at least four pairs of terminals mounted on the mounting substrate, wherein each of the pairs of terminals is electrically connected to a respective pair of conductors. A first pair of conductor free end segments is immediately adjacent each other, a second pair of conductor free end segments is immediately adjacent each other and positioned one side of the first pair, a fourth pair of conductor free end segments is immediately adjacent each other and positioned on an opposite side of the first pair, and a third pair of conductor free end segments sandwiches the first pair, with one of the conductor free end segments of the third pair being disposed between the first and second pairs, and the other of the conductor free end segments being disposed between the first and fourth pairs. Each of the first, second and fourth pairs of conductors includes a crossover between the conductors of the pairs, and wherein the third pair of conductors includes two crossovers between its conductors.
Abstract:
The invention relates to a high frequency component of layered structure, and a method for manufacturing the component. The component comprises at least one dielectric layer parallel to the layers of the layered structure, at least two transmission lines for transmitting electrical signals, at least one capacitor, each of which is formed by overlapping parts of two transmission lines, the overlapping parts being for forming capacitive interaction between the parts, and the overlapping parts being arranged to overlap each other in a transversal direction to a dielectric layer parallel to the layers of the layered structure, the dielectric layer being in between the overlapping parts.
Abstract:
In a circuit board including an analog circuit and a digital circuit, the S/N ratio reduction resulting from the interference of digital signals with analog signals is suppressed. The circuit board includes a digital signal processing section forming part of the digital circuit, digital signal external conductors connected to the digital signal processing section, and digital signal output control means for interrupting the transmission of the digital signals from the digital signal processing section to the digital signal external conductors. A decrease in the limitation for the wiring pattern and the device arrangement provides an increase in the degree of freedom for designing, thereby making it possible to miniaturize the circuit board and to reduce the manufacturing cost thereof.
Abstract:
An electronic substrate for interconnecting electronic components comprises a substrate having one or more conductive inner layers and one or more interconnect cavities extending into the substrate to expose one or more of the inner layers.
Abstract:
The invention relates to a method and device for connecting the electrical conductors which are surrounded by outer insulation and associated with overlapping flat conductors (47, 49) by means of a sonotrode (52) producing ultrasonic vibrations and a counter electrode associated therewith. The conductors which are to be connected are to be arranged on a surface (48) of a carrier (50) extending between the sonotrode and the counter electrode. The carrier can be embodied as a counter electrode.
Abstract:
An electronic assembly is disclosed. The electronic assembly includes a lower portion and a first elongate trace formed on an upper surface of the lower portion. The trace is covered by an upper portion, and an opening formed through an upper surface of the upper portion extends to the trace to expose a portion of the trace. A second elongate trace is formed on the upper portion. A portion of the second elongate trace positioned in the opening formed through the upper surface of the upper portion contacts the first elongate trace through the opening to form an electrical interconnection between the first trace and the second trace.
Abstract:
An audio amplifier output stage layout technique achieves minimum cross coupling between audio amplifier channels. Regarding TDAA output stages, the typical TDAA includes two demodulation inductors per audio channel. The two pair of demodulation inductors associated with the TDAA are arranged to form an X-pattern to simultaneously minimize cross coupling between audio amplifier channels and reduce PCB layout size.
Abstract:
A connector for communications systems has four input terminals and four output terminals, each arranged in an ordered array. A circuit electrically couples each input terminal to the respective output terminal and cancels crosstalk induced across the adjacent connector terminals. The circuit includes four conductive paths between the respective pairs of terminals. The first and third paths are in relatively close proximity and are substantially spaced from the second and fourth paths. The second and fourth paths are in relatively close proximity.
Abstract:
An electrical connector 60 achieves improved transmission performance by introducing predetermined amounts of compensation between two pairs of conductors that extend from its input terminals to its output terminals along interconnection paths. Electrical signals on one pair of conductors are coupled onto the other pair of conductors in two or more compensation stages that are time delayed with respect to each other. Illustratively, the electrical connector is a modular jack that is adapted to receive a modular plug 20. Associated with the modular plug and the input of the modular jack there exists a known amount of offending crosstalk A.sub.0, which is approximately canceled by the two or more stages of compensating crosstalk. In a first stage, compensating crosstalk A.sub.1 is introduced between the pairs, and it has a first predetermined magnitude and phase at a given frequency. In a second stage, compensating crosstalk A.sub.2 is introduced between the pairs, and it has a second predetermined magnitude and phase at the given frequency. Multiple compensation stages are needed because, at high frequencies, compensating crosstalk cannot be introduced that is exactly 180 degrees out of phase with the offending crosstalk because of propagation delay. The electrical connector 60 is constructed using a multi-layer printed wiring board 600 having input and output terminals where connection to metallic wires is made. These terminals are interconnected on the printed wiring board by metallic paths that are arranged to provide multiple stages of compensating crosstalk. When the connector 60 is joined to a plug 20, the near-end crosstalk of the combined structure is extremely low at frequencies up to at least 200 MHz.