Abstract:
A wire-bonding substrate includes a curvilinear wire-bond pad. The curvilinear wire-bond pad is used in reverse wire bonding to couple a die with the substrate. A curvilinear wire-bond pad is also disclosed that is located directly above the via in the substrate. A wire-bonding substrate includes a first wire-bond pad and a first via that is disposed directly below the first wire-bond pad in the wire-bonding substrate. A package is includes a chip stack with a total die-side characteristic dimension, and a total substrate-side characteristic dimension that is smaller than the total die-side characteristic dimension. A computing system includes the curvilinear wire-bond pad.
Abstract:
A wire-bonding substrate includes a first wire-bond pad and a first via that is disposed directly below the first wire-bond pad in the in the wire-bonding substrate. A package includes a die that is coupled to the first wire-bonding pad. The package can include a larger substrate that is coupled to the wire-bonding substrate through an electrical connection such as a solder ball. A process of forming the wire-bonding substrate includes via formation to stop on the wire-bond pad. A method of assembling a microelectronic package includes coupling the die to the wire-bond pad. A computing system includes the wire-bonding substrate.
Abstract:
Logic and memory may be packaged together in a single integrated circuit package that, in some embodiments, has high input/output pin count and low stack height. In some embodiments, the logic may be stacked on top of the memory which may be stacked on a flex substrate. Such a substrate may accommodate a multilayer interconnection system which facilitates high pin count and low package height. In some embodiments, the package may be wired so that the memory may only be accessed through the logic.
Abstract:
A flip-chip is mounted on a flex substrate. A flip-chip is mounted on a flex substrate, and a wire-bond chip is mounted on the flip-chip. A packaged flip-chip die is coupled to the flex substrate. A computing system is also disclosed that includes the flip-chip on a flex substrate configuration.
Abstract:
Buildup layers may be formed over a flexible substrate. A suitable cavity may be formed in the buildup layers and a silicon die may be positioned over the flexible substrate on a die attach formed within the cavity. As a result, a lower profile flexible substrate package is possible.
Abstract:
Some embodiments of the invention effectively shield signal traces on a substrate without impacting the signal trace routing on the metal layers of the substrate. Other embodiments of the invention provide improved power delivery without impacting the signal trace routing on the metal layers of the substrate. Other embodiments of the invention are described in the claims.
Abstract:
Improved solder and soldering methods are disclosed. In accordance with one technique, a solder having a plurality of individual wire strands braided together is used. In accordance with another technique, the braided solder comprises both the same solder composition and wire gauge in the individual solder wire strands. In accordance with another technique, the braided solder comprises at least two different solder compositions used in the individual solder wire strands. In accordance with another technique, the braided solder comprises at least two different wire gauges used in the individual solder wire strands. In accordance with another technique, the braided solder comprises at least one wire strand where the primary surface is coated with a thin layer of a noble metal. In accordance with another technique, the braided solder comprises at least one wire strand where flux material is present. In accordance with one soldering technique, a method of soldering is accomplished by melting a plurality of braided solder strands to join a plurality of metallic surfaces together.
Abstract:
A multi-core processor computer system is described. The computer system includes a wireless communicator that enables access from at least one remote access site comprised of hardware equipped with a wireless communicator. This remote access site may not include a processor as part of the hardware. This remote hardware can access the capabilities of the multi-core processor computer and the computing system via wireless communicators and can allocate a dedicated core within the multi-core processor to the remote user, thereby enabling parallel, independent access to the computing system that can be shared by at least one additional user. The number of remote users can be correlated to the number of cores residing in the multi-core processor computing system. A process of wireless communication between the remote access sites and the computing system to enable independent computing processing capability is also described.
Abstract:
Embodiments of the invention provide a microelectronic device having a heat spreader positioned between a chip and substrate to which the chip is electrically connected. For one embodiment of the invention, the heat spreader is a thermal slug having a coefficient of thermal expansion approximately equal to the coefficient of thermal expansion of the chip.
Abstract:
A method of forming a leadframe package, a leadframe package formed according to the method, and a system incorporating the leadframe package. The leadframe package includes: a metallization layer comprising a paddle portion and a contact portion including contact leads; a die mounted onto the paddle portion; wirebonds connected between the die and respective ones of the contact leads; an overmold encapsulating the die, the paddle portion, the contact leads and the wirebonds; and a stiffening element encapsulated in the overmold and unconnected to electrical pathways within the leadframe package.