Abstract:
Semiconductor device structures having fin structure(s) and fabrication methods thereof are presented. The methods include: providing a first mask above a substrate structure and a second mask above the first mask and the substrate structure; removing portions of the first mask not underlying the second mask and selectively etching the substrate structure using the second mask to form at least one cavity therein; providing a third mask over portions of the substrate structure not underlying the second mask and removing the second mask; and selectively etching the substrate structure using remaining portions of the first mask and the third mask to the form fin structure(s) of the semiconductor device structure, where the fin structure(s) is self-aligned with the at least one cavity in the substrate structure. For example, the semiconductor device structure can be a fin-type transistor structure, and the method can include forming a source/drain region within a cavity.
Abstract:
Devices and methods for forming semiconductor devices with metal-titanium oxide contacts are provided. One intermediate semiconductor device includes, for instance: a substrate, at least one field-effect transistor disposed on the substrate, a first contact region positioned over at least a first portion of the at least one field-effect transistor between a spacer and an interlayer dielectric, and a second contact region positioned over at least a second portion of the at least one field-effect transistor between a spacer and an interlayer dielectric. One method includes, for instance: obtaining an intermediate semiconductor device and forming at least one contact on the intermediate semiconductor device.
Abstract:
A methodology for forming a self-aligned contact (SAC) that exhibits reduced likelihood of a contact-to-gate short circuit failure and the resulting device are disclosed. Embodiments may include forming a replacement metal gate, with spacers at opposite sides thereof, on a substrate, forming a recess in an upper surface of the spacers along outer edges of the replacement metal gate, and forming an aluminum nitride (AlN) cap over the metal gate and in the recess.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to self-aligned interconnect structures and methods of manufacture. The structure includes an interconnect structure which is self-aligned with an upper level via metallization, and both the interconnect structure and the upper level via metallization are composed of a Pt group material.
Abstract:
A method includes providing a starting semiconductor structure, the starting semiconductor structure including a semiconductor substrate with active region(s) separated by isolation regions, the active region(s) including source/drain regions of epitaxial semiconductor material, dummy gate structures adjacent each source/drain region, the dummy gate structures including dummy gate electrodes with spacers adjacent opposite sidewalls thereof and gate caps thereover, and openings between the dummy gate structures. The method further includes filling the openings with a dielectric material, recessing the dielectric material, resulting in a filled and recessed structure, and forming a hard mask liner layer over the filled and recessed structure to protect against loss of the recessed dielectric material during subsequent removal of unwanted dummy gate electrodes. A resulting semiconductor structure formed by the method is also provided.
Abstract:
An intermediate semiconductor structure in fabrication includes a silicon semiconductor substrate, a hard mask of silicon nitride (SiN) over the substrate and a sacrificial layer of polysilicon or amorphous silicon over the hard mask. The sacrificial layer is patterned into sidewall spacers, each of the sidewall spacers having vertically tapered inner and outer sidewalls providing a rough triangular shape. The rough triangular sidewall spacers are used as a temporary hard mask to pattern the SiN hard mask.
Abstract:
A method includes providing a substrate having a first and a second plurality of fins with a first at least one dielectric material disposed thereon, removing upper portions of the first dielectric material to expose upper portions of the first and the second plurality of fins, removing the first dielectric material from the lower portions of the second plurality of fins to expose lower portions of the second plurality of fins, depositing a second at least one dielectric material on at least the upper and the lower exposed portions of the second plurality of fins and on the upper exposed portions of first plurality of fins, removing the second dielectric material to expose upper portions of the first and the second plurality of fins, and wherein the first dielectric material is different from the second dielectric material. The resulting structure may be operable for use as nFETs and pFETs.
Abstract:
Methodologies and a device for SRAM patterning are provided. Embodiments include forming a spacer layer over a fin channel, the fin channel being formed in four different device regions; forming a bottom mandrel over the spacer layer; forming a top mandrel directly over the bottom mandrel, wherein the top and bottom mandrels including different materials; forming a buffer oxide layer over the top mandrel; forming an anti-reflective coating (ARC) over the first OPL; forming a photoresist (PR) over the ARC and patterning the PR; and etching the first OPL, ARC, buffer oxide, and top mandrel with the pattern of the PR, wherein a pitch of the PR as patterned is different in each of the four device regions.
Abstract:
A method for forming FinFETs having a capping layer for reducing punch through leakage includes providing an intermediate semiconductor structure having a semiconductor substrate and a fin disposed on the semiconductor substrate. A capping layer is disposed over the fin, and an isolation fill is disposed over the capping layer. A portion of the isolation fill and the capping layer is removed to expose an upper surface portion of the fin. Tapping layer and a lower portion of the fin define an interface dipole layer barrier, a portion of the capping layer operable to provide an increased negative charge or an increased positive charge adjacent to the fin, to reduce punch-through leakage compared to a fin without the capping layer.
Abstract:
Devices and methods for forming semiconductor devices with metal-titanium oxide contacts are provided. One intermediate semiconductor device includes, for instance: a substrate, at least one field-effect transistor disposed on the substrate, a first contact region positioned over at least a first portion of the at least one field-effect transistor between a spacer and an interlayer dielectric, and a second contact region positioned over at least a second portion of the at least one field-effect transistor between a spacer and an interlayer dielectric. One method includes, for instance: obtaining an intermediate semiconductor device and forming at least one contact on the intermediate semiconductor device.