Abstract:
Methods for selecting tag-oligonucleotide sequences for use in an in vitro nucleic acid assay. The selected tag sequences are useful for nucleic acid assay wherein interference between the nucleic acid sequences is the assay is to be controlled. Selected tag sequences are incorporated into nucleic acid assay to improve the performance of and/or minimize any interference between nucleic acids in the assay compared to untagged assays.
Abstract:
Improved methods for use in nucleic acid amplification, including multiplex amplification, where the amplification is carried out in two or more distinct phases are disclosed. The first phase amplification reaction preferably lacks one or more components required for exponential amplification. The lacking component is subsequently provided in a second, third or further phase(s) of amplification, resulting in a rapid exponential amplification reaction. The multiphase protocol results in faster and more sensitive detection and lower variability at low analyte concentrations. Compositions for carrying out the claimed methods are also disclosed.
Abstract:
Disclosed are methods for amplifying a nucleic acid target region using an amplification oligomer comprising a target-binding segment and a heterologous displacer tag situated 5′ to the target-binding segment. Initiation of an amplification reaction from the tagged amplification oligomer produces an amplicon comprising the displacer tag, such that once the complement of the displacer tag has been incorporated into a second amplicon, a displacer oligonucleotide having a sequence substantially corresponding to the displacer tag sequence is used to participate in subsequent rounds of amplification for displacement of an extension product primed from a site within the second amplicon 5′ to the displacer priming site. Also disclosed are related kits and reaction mixtures comprising the displacer-tagged amplification oligomer and corresponding displacer oligonucleotide.
Abstract:
Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.
Abstract:
A receptacle comprises opposed members, a plurality of chambers having perimeter walls defined by seals formed between the opposed members and portals interconnecting the chambers, and a rigid frame supporting the opposed members at their peripheral edges. The frame comprises a front frame portion and a rear frame portion, and the peripheral edges of the opposed members are retained between the front and rear frame portions. An inlet port extends between the front and rear frame portions and is in fluid communication with one of the chambers.
Abstract:
A receptacle having a plurality of interconnected chambers arranged to permit multiple process steps or processes to be performed independently or simultaneously. The receptacles are manufactured to separate liquid from dried reagents and to maintain the stability of the dried reagents. An immiscible liquid, such as an oil, is included to control loading of process materials, facilitate mixing and reconstitution of dried reagents, limit evaporation, control heating of reaction materials, concentrate solid support materials to prevent clogging of fluid connections, provide minimum volumes for fluid transfers, and to prevent process materials from sticking to chamber surfaces. The receptacles can be adapted for use in systems having a processing instrument that includes an actuator system for selectively moving fluid substances between chambers and a detector. The actuator system can be arranged to concentrate an analyte. The detector can be used to detect an optical signal emitted by contents of the receptacle.
Abstract:
A receptacle having a plurality of interconnected chambers arranged to permit multiple process steps or processes to be performed independently or simultaneously. The receptacles are manufactured to separate liquid from dried reagents and to maintain the stability of the dried reagents. An immiscible liquid is included to control loading of process materials, facilitate mixing and reconstitution of dried reagents, limit evaporation, control heating of reaction materials, concentrate solid support materials to prevent clogging of fluid connections, provide minimum volumes for fluid transfers, and to prevent process materials from sticking to chamber surfaces. The receptacles can be adapted for use in systems having a processing instrument that includes an actuator system for selectively moving fluid substances between chambers and a detector. The actuator system can be arranged to concentrate an analyte in a sample. The detector can be used to detect an optical signal emitted by the contents of the receptacle.
Abstract:
The invention provides compositions and methods for making closed nucleic acid structures in which one or both strands are continuous. The closed nucleic acid structures can be used as sequencing templates among other applications.
Abstract:
Disclosed are methods for amplifying a nucleic acid target region using an amplification oligomer comprising a target-binding segment and a heterologous displacer tag situated 5′ to the target-binding segment. Initiation of an amplification reaction from the tagged amplification oligomer produces an amplicon comprising the displacer tag, such that once the complement of the displacer tag has been incorporated into a second amplicon, a displacer oligonucleotide having a sequence substantially corresponding to the displacer tag sequence is used to participate in subsequent rounds of amplification for displacement of an extension product primed from a site within the second amplicon 5′ to the displacer priming site. Also disclosed are related kits and reaction mixtures comprising the displacer-tagged amplification oligomer and corresponding displacer oligonucleotide.
Abstract:
Methods for selecting tag-oligonucleotide sequences for use in an in vitro nucleic acid assay. The selected tag sequences are useful for nucleic acid assay wherein interference between the nucleic acid sequences is the assay is to be controlled. Selected tag sequences are incorporated into nucleic acid assay to improve the performance of and/or minimize any interference between nucleic acids in the assay compared to untagged assays.