Abstract:
Some embodiments include apparatus and methods having an input to receive an input signal, additional inputs to receive clock signals having different phases to sample the input signal, and a decision feedback equalizer (DFE) having DFE slices. The DFE slices include a number of data comparators to provide data information based on the sampling of the input signal, and a number of phase error comparators to provide phase error information associated with the sampling of the input signal. The number of phase error comparators of the DFE slices is not greater than the number of data comparators of the DFE slices.
Abstract:
Embodiments of the invention are generally directed to systems, methods, and apparatuses for hybrid memory. In one embodiment, a hybrid memory may include a package substrate. The hybrid memory may also include a hybrid memory buffer chip attached to the first side of the package substrate. High speed input/output (HSIO) logic supporting a HSIO interface with a processor. The hybrid memory also includes packet processing logic to support a packet processing protocol on the HSIO interface. Additionally, the hybrid memory also has one or more memory tiles that are vertically stacked on the hybrid memory buffer.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
Embodiments disclosed herein include waveguides. In an embodiment, a waveguide comprises a conductive shell and a first ridge within the conductive shell. In an embodiment, the first ridge extends away from the conductive shell. In an embodiment, the waveguide further comprises a first core over the first ridge, where the first core comprises a first dielectric material with a first permittivity. In an embodiment, the waveguide may further comprise a second core embedded in the first core, where the second core comprises a second dielectric material with a second permittivity that is greater than the first permittivity.
Abstract:
Described is a reconfigurable transmitter which includes: a first pad; a second pad; a first single-ended driver coupled to the first pad; a second single-ended driver to the second pad; a differential driver coupled to the first and second pads; and a logic unit to enable of the first and second single-ended drivers, or to enable the differential driver.
Abstract:
Dynamic bus inversion (DBI) for programmable levels of a ratio of ones and zeros. A transmitting device identifies a number and/or ratio of ones and zeros in a noninverted version of a signal to be transmitted (“noninverted signal”) and a number and/or ratio of ones and zeros in an inverted version of the signal (“inverted signal”). The transmitting device can calculate whether a difference of ones and zeros in the noninverted signal or a difference of ones and zeros in the inverted signal provides a calculated average ratio of ones to zeros closer to a target ratio. The transmitting device sends the signal that achieves provides the calculated average ratio closer to the target ratio.
Abstract:
Described is a reconfigurable transmitter which includes: a first pad; a second pad; a first single-ended driver coupled to the first pad; a second single-ended driver to the second pad; a differential driver coupled to the first and second pads; and a logic unit to enable of the first and second single-ended drivers, or to enable the differential driver.
Abstract:
Embodiments of the present disclosure provide apparatuses and systems for proximity communications. The apparatus may include an integrated circuit (IC) package with a central processing unit (CPU) circuit, an input-output (I/O) circuit coupled with the CPU circuit, and a dielectric electromagnetic waveguide coupled with the I/O circuit, to enable communications between the CPU circuit and another apparatus. In another instance, the apparatus may include a plurality of coupler pads disposed on a first surface of the apparatus; and a processor electrically coupled with the coupler pads. One of the coupler pads may form capacitive coupling with one of coupler pads disposed on a second surface of another apparatus, in response to a placement of the first surface in at least partial contact with the second surface, to enable proximity data communication between the processor and the other apparatus. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the invention are generally directed to systems, methods, and apparatuses for hybrid memory. In one embodiment, a hybrid memory may include a package substrate. The hybrid memory may also include a hybrid memory buffer chip attached to the first side of the package substrate. High speed input/output (HSIO) logic supporting a HSIO interface with a processor. The hybrid memory also includes packet processing logic to support a packet processing protocol on the HSIO interface. Additionally, the hybrid memory also has one or more memory tiles that are vertically stacked on the hybrid memory buffer.
Abstract:
Methods and systems may include an input/output (IO) interface that has an integrated buffer, a housing and a substrate disposed within the housing. The substrate may include a first side, a second side and a connection edge. The integrated buffer can be coupled to at least one of the first side and the second side of the substrate. A plurality of rows of contacts may be coupled to the first side of the substrate. Each row of contacts can be stacked substantially parallel to the connection edge. The substrate may have power outputs coupled thereto and the integrated buffer can include a voltage regulator that has a supply output coupled to the power outputs.