摘要:
In one embodiment of the invention, a die is bonded on a strip carrier frame having a carrier alignment landmark. A tape automated bonding (TAB) strip having a TAB alignment landmark is aligned with the strip carrier frame. The TAB strip is bonded to the strip carrier frame to form a bonded unit.
摘要:
A printed circuit substrate having solder bumps formed on pad-on-via contacts and pad-off-via contacts. The printed circuit substrate has at least one pad-on-via contact and at least one pad-off-via contact. A first solder bump is on the pad-on-via contact and a second solder bump is on the pad-off-via contact. The first and second solder bumps are substantially the same height as measured above a horizontal plane that is substantially co-planar to the pad-off-via contact.
摘要:
An method for depositing solder onto the pad-on and pad-off via contacts of a substrate is disclosed. In one embodiment the present invention includes positioning a mask having a first opening of a first diameter and a second opening of a second diameter over a substrate having both pad-on and pad-off via contacts. The substrate is positioned over the substrate such that the first opening is positioned over the pad-on via contact and the second opening is positioned over the pad-off via contact. Solder of a first volume and solder of a second volume are deposited onto the pad-on and pad-off via contacts, respectively, by forcing a solder paste through the mask openings. In this manner, solder bumps having a uniform height and volume above the pad-on via contact plane is established after reflowing the deposited solder.
摘要:
A mounting substrate for a processor includes a die side and a land side with a processor footprint configured on the die side. The processor footprint is coupled to at least one processor interconnect and a microelectronic die is embedded in the mounting substrate. The microelectronic die is coupled to the processor interconnect and communication between a processor to be installed on the processor footprint is in a rate between 10 Gb/s and 1 Tb/s.
摘要:
Systems and methods for encapsulating a stack of semiconductor dice are described. A stack of semiconductor dice may be formed, for example by attaching die to flexible printed circuit supports attached to frames and stacking the supports, and then encapsulated by flowing a liquid encapsulant around the stack of dice and solidifying the liquid encapsulant. The die supports may contain encapsulant flow openings, such as rectangular slits, that allow the liquid encapsulant to flow around the stack of dice.
摘要:
Embodiments include a generally planar patch substrate having external connection pads on one side, electrical connections connected to the external connection pads and extending through the substrate, and plated contacts formed on the electrical connections and extending beyond the other side of the patch substrate. The external connection pads may be connected to one electrical device using solder bumps or balls, and the plated contacts may be connected to contacts of another electrical device by thermo-compression bonding. Also, a surface of the patch substrate having the plated contacts may be attached to the other electrical device using an electrically insulating adhesive. Moreover, the plated contacts may have a smaller surface area than the external connection pads, so that the other electrical device can also have smaller contacts, leaving more space for electrically conductive traces to the contacts on the surface and within layers of the other electrical device.
摘要:
Systems and methods for encapsulating a stack of semiconductor dice are described. A stack of semiconductor dice may be formed, for example by attaching die to flexible printed circuit supports attached to frames and stacking the supports, and then encapsulated by flowing a liquid encapsulant around the stack of dice and solidifying the liquid encapsulant. The die supports may contain encapsulant flow openings, such as rectangular slits, that allow the liquid encapsulant to flow around the stack of dice.
摘要:
A substrate for an integrated circuit package is provided. The substrate includes a first dielectric layer with a first coefficient of thermal expansion. The first dielectric layer has a bottom surface and an inner side surface. The inner side surface defines a first aperture. The substrate also includes a conductive pad having a bottom surface and a side surface. The side surface of the conductive pad engages the inner side surface of the first dielectric layer. The substrate further includes a second dielectric layer having a second coefficient of thermal expansion closely matching the first coefficient of thermal expansion. The second dielectric layer is deposited upon the bottom surface of the first dielectric layer and upon a first portion of the bottom surface of the conductive pad. The first portion of the bottom surface of the conductive pad is adjacent to the side surface of the conductive pad.
摘要:
Generally discussed herein are systems and apparatuses that include a dense interconnect bridge and techniques for making the same. According to an example a technique can include creating a multidie substrate, printing an interconnect bridge on the multidie substrate, electrically coupling a first die to a second die by coupling the first and second dies through the interconnect bridge.
摘要:
An encapsulated die (100, 401) comprises a substrate (110, 510) having a first surface (111), an opposing second surface (112), and intervening side surfaces (113), with active devices located at the first surface of the substrate. The active devices are connected by a plurality of electrically conductive layers (120, 520) that are separated from each other by a plurality of electrically insulating layers (125, 525). A protective cap (130, 530) is located over the first surface of the substrate contains an interconnect structure (140) exposed at a surface (131) thereof. In another embodiment, a microelectronic package (200) comprises a package substrate (250) with an encapsulated die (100) such as was described above embedded therein.