Abstract:
An electrical contact assembly includes a first module having a first set of electrical contacts, a second module having a second set of electrical contacts, a shape generating module, and a clamping arrangement for clamping the first, second and shape generating modules together. The shape generating module imparts a desired shape to the second module for urging the second set of electrical contacts toward the first set of electrical contacts, such that clamping the modules together results in a positive contact force between the first and second sets of electrical contacts that is substantially uniform across the sets of electrical contacts. The shape generating module includes a first insulating layer, a second insulating layer and a shape producing layer disposed between the first and second insulating layers. The shape producing layer includes an adhesive that flows and cures upon application of a heat treatment to produce the desired shape.
Abstract:
A method and structure are provided for implementing enhanced interconnection performance of an electrical connector, such as a land grid array (LGA) module, and a printed wiring board. A multi-layer printed wiring board includes a plurality of predefined ground and power layers. At least one of the predefined ground and power layers includes a thickness variation minimizing structure for minimizing thickness variation. The thickness variation minimizing structure includes a perforated pattern within a selected area of the at least one of the predefined ground and power layers. The selected area is proximate to predefined module sites, such as land grid array (LGA) module sites, in the ground and power layers. The selected area can include regions surrounding each predefined module site, and also can include a region within the module site.
Abstract:
Land grid array (LGA) connectors are used to attach circuit modules to printed circuit boards that present an array of noble metal or semi-noble metal plated contacts to not only effect a reliable connection, but also enable circuit module release and replacement. During replacement, the connector is discarded and a replacement circuit module is used. Only the contact array on the printed circuit board is reused. An in situ gasket carried by the connector is compressed against the circuit board in the assembled condition to form a sealed enclosure about the contact array at the printed circuit board surface which excludes particulate and gaseous contaminants. Thus when the module is replaced, the contact array site on the printed circuit board does not require cleaning or processing to overcome degradation of the contact materials or surfaces. Beyond providing a sealed enclosure, the gasket material should be selected for sealing, but inelastic qualities so that the uniform pressure applied to the contacts of the array is not impaired nor the total required contact force increased.
Abstract:
An enhanced contact metallurgy construction for plastic land grid array (PLGA) modules and printed wiring boards (PWBs). The PWB may, for example, have subcomposite laminate construction and/or a double-sided LGA site. A plurality of preform contacts are each respectively soldered to one of a plurality of metal pads on a PLGA module carrier and/or a PWB. Each of the preform contacts comprises a metal preform base (e.g., copper, nickel) soldered to one of the plurality of metal pads and an electrolytic noble metal plating (e.g., gold) over the metal preform base. An electrolytic non-noble metal underplating (e.g., nickel) may be interposed between the metal preform base and the electrolytic noble metal plating. In one embodiment, the electrolytic non-noble metal underplating is 80-400 microinches thick to provide an enhanced diffusion barrier, and the electrolytic noble metal plating is 30-60 microinches thick and incorporates one or more hardening agents to provide enhanced wear and corrosion resistance.
Abstract:
A method and a surface mount technology (SMT) pad structure are provided for implementing enhanced solder joint robustness. The SMT pad structure includes a base SMT pad. The base SMT pad receives a connector for soldering to the SMT pad structure. A standoff structure having a selected geometry is defined on the base SMT pad to increase thickness of the solder joint for the connector.
Abstract:
An enhanced contact metallurgy construction for plastic land grid array (PLGA) modules and printed wiring boards (PWBs). The PWB may, for example, have subcomposite laminate construction and/or a double-sided LGA site. A plurality of preform contacts are each respectively soldered to one of a plurality of metal pads on a PLGA module carrier and/or a PWB. Each of the preform contacts comprises a metal preform base (e.g., copper, nickel) soldered to one of the plurality of metal pads and an electrolytic noble metal plating (e.g., gold) over the metal preform base. An electrolytic non-noble metal underplating (e.g., nickel) may be interposed between the metal preform base and the electrolytic noble metal plating. In one embodiment, the electrolytic non-noble metal underplating is 80-400 microinches thick to provide an enhanced diffusion barrier, and the electrolytic noble metal plating is 30-60 microinches thick and incorporates one or more hardening agents to provide enhanced wear and corrosion resistance.
Abstract:
A method and apparatus for electrically connecting two substrates using a land grid array (LGA) connector provided with a frame structure having power distribution elements. In an embodiment, the frame structure includes a frame having one or more conductive layers sandwiched between non-conductive layers. The frame may, for example, be a printed wire board (PWB) having power planes that distribute power from a first substrate (e.g., a system PWB) and/or a power cable to a second substrate (e.g., an electronic module). The frame includes one or more apertures configured to receive an LGA interposer for electrically connecting the two substrates. Preferably, the frame includes four apertures arranged in quadrants that each receive an interposer, and at least one power plane extends between two quadrants and/or adjacent to a peripheral edge of one or more quadrants in the form of stacked and/or parallel bus bars each defining a power domain.
Abstract:
A conductive sash is etched around the periphery of a land grid array interconnection on a carrier for dense integrated circuit connections. If the array comprises more than one module or module chip domain, the conductive sash is also positioned between the modules. The dimensions of the sash are such that it is slightly larger than a frame of an interposer or other electrical connector which is placed upon the array. In this fashion, the interposer or other electrical connector rests upon the sash and provides protection against particulate and gaseous contamination of the array. Preferably, the sash is manufactured along with the array of electrical interconnections of the carrier, and during the manufacture the sash provides more homogeneous current density to the outer interconnections of the array during component processing which in turn provides more predictable and consistent surface topography of the carrier and permits more uniform mechanical loading of the interposer or other connector onto the array when assembled.
Abstract:
A method to replace an electrical interface on a printed circuit board having a plurality of contact pads on a top surface, the contact pads being connected to conducting material extending through said circuit board. For the contact pad being replaced, drilling a hole through said printed circuit board at that location, and removing any remaining conductor material attached to the contact pad on the top board surface. Providing a replacement conductor/contact pad structure having a generally T-configuration with a stem and a head that completely surrounds the stem, wherein said head has a diameter greater than the diameter of the drilled hole. Inserting the replacement conductor/contact pad into the hole with said stem extending beyond the second surface of the board with the bottom surface of the head being in contact with the first surface of said board. A replacement conductor/contact pad on repaired board is also described.
Abstract:
Fine pitch area array packaging is achieved using a via-in-pad design within the area array attach portion of a printed circuit board (PCB). The limitation of the design is the wicking action, whereby solder applied to the capture pad contact surface is depleted by capillary action into the via hole when reflowed, causing insufficient solder to be present at the contact surface to effect reliable and repeatable electrical connections. In one implementation, an initial application of solder is applied to plug the via hole with a material having a higher final melting temperature than eutectic solder, thereby providing a stable plug. This plug is formed by the initial solder application that may be either a eutectic solder containing a third metal that forms intermetallic compounds, when reflowed, that elevate the liquidus temperature or a solder having a different formulation with an inherent higher melting temperature. An alternative implementation is to plate the via hole with a material, such as nickel, which prevents eutectic solder, applied to the via capture pad contact surface, from wetting the hole surface and being drawn away from the contact surface by capillary action. Thus, the solder, applied to the via capture pad and used to establish an electrical connection is not depleted.