Abstract:
In an embodiment an optoelectronic device includes an optoelectronic component with a first main surface, a second main surface and a plurality of side surfaces interconnecting the first and second main surfaces and a conversion element arranged at the first main surface of the optoelectronic component, wherein the conversion element includes a frame of a reflective material and a conversion material located within the frame, wherein an interface between the frame and the conversion material runs slanted having an angle of smaller than 180° and larger than 90° between the interface and an adjacent side surface of the plurality of side surfaces, and wherein the frame protrudes laterally beyond a light emitting area of the first main surface of the optoelectronic component.
Abstract:
An optoelectronic component includes a substrate, a connecting element applied on the substrate and a layer sequence that emits electromagnetic radiation. The layer sequence is applied on the connecting element. The connecting element includes at least one connecting material that has an oriented molecular configuration. The connecting element has at least one parameter that is anisotropic.
Abstract:
An electromagnetic radiation emitting assembly includes a carrier, an electromagnetic radiation emitting component arranged above the carrier, and a potting material at least partly surrounding the electromagnetic radiation emitting component and into which are embedded phosphor that converts the electromagnetic radiation and heat-conducting particles that conduct heat arising during operation of the electromagnetic radiation emitting assembly, wherein a phosphor concentration in the potting material near the electromagnetic radiation emitting component is greater than a particle concentration of the heat-conducting particles in the potting material near the electromagnetic radiation emitting component, and a particle concentration of the heat-conducting particles in the potting material near the electromagnetic radiation emitting component is greater than in the potting material remote from the electromagnetic radiation emitting component.
Abstract:
A method for producing a conversion element is disclosed. In an embodiment, the method includes providing an acidic medium having a pH value of less than 2, adding a conversion material into the acidic medium thereby forming a mixture and adding a silicate solution having a viscosity between 2 to 10 000 poize inclusive to the mixture such that the pH value during the addition of the silicate solution is smaller than 2. The method further includes obtaining a precipitate which contains the conversion material and silicon dioxide as a matrix material, separating the precipitate, washing the precipitate with a washing medium, wherein the washing medium has a pH value of less than 2; and hardening the precipitate thereby forming the conversion element.
Abstract:
An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment a method for producing an optoelectronic component includes providing a semiconductor capable of emitting primary radiation, providing an alkoxy-functionalized polyorganosiloxane resin and crosslinking the alkoxy-functionalized polyorganosiloxane resin to form a three-dimensionally crosslinked polyorganosiloxane, wherein an organic portion of the three-dimensionally crosslinked polyorganosiloxane is up to 25 wt %.
Abstract:
An optoelectronic device with a mixture including silicone and a fluoro-organic additive is disclosed. In an embodiment the device includes at least one radiation-emitting or radiation-detecting semiconductor and a mixture including silicone and a fluoro-organic additive. The mixture may be a component of at least one of the following elements: a package body element surrounding the at least one semiconductor at least in places, a radiation-guiding element arranged in a beam path of a radiation emitted by the semiconductor or detected by the semiconductor, a heat-conducting element configured to conduct heat emitted by the semiconductor or received by the semiconductor, or an adhesive element.
Abstract:
A method of producing a light-emitting device includes providing a carrier having a carrier top face and at least one light-emitting semiconductor chip arranged on the carrier top face, wherein the semiconductor chip has a radiation emission face and is arranged on the carrier top face such that the radiation emission face faces away from the carrier top face; arranging a converter element on the at least one semiconductor chip on its radiation emission face so that the converter element fully covers the radiation emission face of the semiconductor chip and extends laterally beyond the semiconductor chip; covering the converter element with an encapsulant, and compression molding and curing the encapsulant so that the encapsulant covers the converter element on a face facing away from the semiconductor chip, and the converter element and the encapsulant fit closely against the radiation emission face and at least against a side face of the semiconductor chip; and detaching the encapsulant, together with the converter element and the semiconductor chip, from the carrier.
Abstract:
A radiation-emitting component includes a radiation source; a transparent material disposed in the beam path of the component and including a polymer material and filler particles, wherein the filler particles include an inorganic filler material and a phosphonic acid derivative or phosphoric acid derivative attached to a surface thereof and through which the filler particles are crosslinked with the polymer material.
Abstract:
A method for producing an optoelectronic device and an optoelectronic device is disclosed. According to at least one embodiment, an optoelectronic device is provided, which comprises a housing, a radiation-emitting or radiation-receiving semiconductor chip which is arranged in the housing, and an optical element which is arranged in a beam path of the device. The optical element comprises an amphiphilic block copolymer which contains polysiloxane as a hydrophobic polymer and a hydrophilic polymer cross-linked therewith. The optical element further comprises thermally conductive nanoparticles which are distributed in the amphiphilic block copolymer and comprise a material which is selected from the group comprising a metal, a metal oxide, a metal hydroxide and a combination thereof.
Abstract:
An optoelectronic component includes an optoelectronic semiconductor chip that, during intended operation, generates primary radiation coupled out of the semiconductor chip via an emission side of the semiconductor chip; and a first conversion element on the emission side, wherein the first conversion element includes a first matrix material and first phosphor particles in the form of quantum dots, the first phosphor particles are distributed and embedded in the first matrix material, and the first matrix material is formed by a polysiloxane in which an atomic percentage of carbon is smaller than an atomic percentage of oxygen.