Abstract:
Disclosed is a laminated (or non-laminated) conductive interconnection for joining an integrated circuit device to a device carrier, where the conductive interconnection comprises alternating metal layers and polymer layers. In addition, the polymer can include dendrites, metal projections from the carrier or device, and/or micelle brushes on the outer portion of the polymer. The polymer layers include metal particles and the alternating metal layers and polymer layers form either a cube-shaped structure or a cylinder-shaped structure.
Abstract:
A method for attaching a handler to a wafer, the wafer comprising an integrated circuit (IC), includes forming a layer of an adhesive on the wafer, the adhesive comprising a polyimide-based polymer configured to withstand processing at a temperature of over about 280° C.; and adhering a handler to the wafer using the layer of adhesive. A system for attaching a handler to a wafer, the wafer comprising IC, includes a layer of an adhesive located on the wafer, the adhesive comprising a polyimide-based polymer configured to withstand processing at a temperature of over about 280° C.; and a handler adhered to the wafer using the layer of adhesive.
Abstract:
A physically secure processing assembly is provided that includes dies mounted on a substrate so as to sandwich the electrical contacts of the dies between the dies and the substrate. The substrate is provided with substrate contacts and conductive pathways that are electrically coupled to the die contacts and extend through the substrate. Electrical conductors surround the conductive pathways. A monitoring circuit detects a break in continuity of one or more of the electrical conductors, and preferably renders the assembly inoperable. Preferably, an epoxy encapsulation is provided to prevent probing tools from being able to reach the die or substrate contacts.
Abstract:
Disclosed is a laminated (or non-laminated) conductive interconnection for joining an integrated circuit device to a device carrier, where the conductive interconnection comprises alternating metal layers and polymer layers. In addition, the polymer can include dendrites, metal projections from the carrier or device, and/or micelle brushes on the outer portion of the polymer. The polymer layers include metal particles and the alternating metal layers and polymer layers form either a cube-shaped structure or a cylinder-shaped structure.
Abstract:
Apparatus and methods are provided for constructing balanced semiconductor chip package structures that minimize bowing, in-plane strain and/or other thermally induced mechanical strains that may arise during thermal cycling, to thus prevent structural damage to chip package structures.
Abstract:
A method of stacking a chip, including an integrated circuit, onto a substrate including applying an anisotropic conductive film (ACF) or a solder-filled conductive film onto a surface thereof, the surface being configured to electrically couple to the film, placing the chip onto the film, the chip being configured to electrically couple to the film, compressively pressurizing the chip, the film and the surface such that the chip is electrically coupled to the surface via the film,, testing the chip to determine whether the chip is operating normally, reworking the placement of the chip onto the film and repeating the compressive pressurization if the chip is determined to not be operating normally, repeating the testing to determine whether the chip is operating normally, and once the chip is determined to be operating normally, bonding the chip, the film and the surface.
Abstract:
A method of forming compliant electrical contacts includes patterning a conductive layer into an array of compliant members. The array of compliant members is then positioned to be in contact with electrical connection pads on an integrated circuit wafer and the compliant members are joined to the pads. Then, the supporting layer that supported the compliant members is removed to leave the compliant members connected to the pads.
Abstract:
A method is provided for making ferrules for connecting optical fibers to other optical fibers or to an optical input device such as an optical chip. The method utilizes ceramic greensheets or silicon wafers. In one method, the greensheets are stacked and laminated and then fiber optic through openings are provided in the laminate for holding the fibers. The laminate is then sintered forming the ferrule.
Abstract:
A method for attaching a handler to a wafer, the wafer comprising an integrated circuit (IC), includes forming a layer of an adhesive on the wafer, the adhesive comprising a polyimide-based polymer configured to withstand processing at a temperature of over about 280° C.; and adhering a handler to the wafer using the layer of adhesive. A system for attaching a handler to a wafer, the wafer comprising IC, includes a layer of an adhesive located on the wafer, the adhesive comprising a polyimide-based polymer configured to withstand processing at a temperature of over about 280° C.; and a handler adhered to the wafer using the layer of adhesive.
Abstract:
A method for releasing a handler from a wafer, the wafer comprising an integrated circuit (IC), includes attaching the handler to the wafer using an adhesive comprising a thermoset polymer, the handler comprising a material that is transparent in a wavelength range of about 193 nanometers (nm) to about 400 nm; ablating the adhesive through the handler using a laser, wherein a wavelength of the laser is selected based on the transparency of the handler material; and separating the handler from the wafer.