Abstract:
A fin field-effect transistor (FinFET) includes a gate stack on a surface of a semiconductor fin. The semiconductor fin may include a capping material and a stressor material. The stressor material is confined by the capping material to a region proximate the gate stack. The stressor material provides stress on the semiconductor fin proximate the gate stack.
Abstract:
A first and a second instance of a common structured stack are formed, respectively, on a first fin and a second fin. The common structured stack includes a work-function metal layer, and a barrier layer. The barrier layer of the first instance of the common structured stack is etched through, and the work-function metal layer of the first instance of the common structure is partially etched. The partial etch forms a thinner work-function metal layer, having an oxide of the work-function metal as a new barrier layer. A gate element is formed on the new barrier layer.
Abstract:
Non-volatile memory devices and logic devices are fabricated using processes compatible with high dielectric constant/metal gate (HK/MG) processes for increased cell density and larger scale integration. A doped oxide layer, such as a silicon-doped hafnium oxide (HfO2) layer, is implemented as a ferroelectric dipole layer in a non-volatile memory device
Abstract:
Systems and methods are directed to a semiconductor device, which includes an integrated circuit, wherein the integrated circuit includes at least a first layer comprising two or more Tungsten lines and at least one air gap between at least two Tungsten lines, the air gaps to reduce capacitance. An interposer is coupled to the integrated circuit, to reduce stress on the two or more Tungsten lines and the at least one air gap. A laminated package substrate may be attached to the interposer such that the interposer is configured to absorb mechanical stress induced by mismatch in coefficient of thermal expansion (CTE) between the laminated package substrate and the interposer and protect the air gap from the mechanical stress.
Abstract:
A semiconductor device includes a die having a via coupling a first interconnect layer to a trench. The semiconductor device also includes a barrier layer on sidewalls and adjacent surfaces of the trench, and on sidewalls of the via. The semiconductor device has a doped conductive layer on a surface of the first interconnect layer. The doped conductive layer extends between the sidewalls of the via. The semiconductor device further includes a conductive material on the barrier layer in both the via and the trench. The conductive material is on the doped conductive layer disposed on the surface of the first interconnect layer.
Abstract:
Methods for fabricating a fin in a fin field effect transistor (FinFET), include exposing a single crystal fin structure coupled to a substrate of the FinFET. The single crystal fin structure is of a first material. The method further includes implanting a second material into the exposed single crystal fin structure at a first temperature. The first temperature reduces amorphization of the single crystal fin structure. The implanted single crystal fin structure comprises at least 20% of the first material. The method also includes annealing the implanted fin structure at a second temperature. The second temperature reduces crystal defects in the implanted fin structure to form the fin.
Abstract:
A multi-cell transistor includes gate body elements, gate tip elements extending from the gate body elements, and gate extensions extending from the gate tip elements. A patterned metal layer is provided between adjacent gate elements and at least portions of adjacent gate tip elements. Spacers are provided on the sides of each gate body element and each gate tip element to prevent the patterned metal layer from creating a short circuit between adjacent gate tip elements.
Abstract:
A sacrificial cap is grown on an upper surface of a conductor. A dielectric spacer is against a side of the conductor. An upper dielectric side spacer is formed on a sidewall of the sacrificial cap. The sacrificial cap is selectively etched, leaving a cap recess, and the upper dielectric side spacer facing the cap recess. Silicon nitride is filled in the cap recess, to form a center cap and a protective cap having center cap and the upper dielectric spacer.
Abstract:
A semiconductor device includes a die having a via coupling a first interconnect layer to a trench. The semiconductor device also includes a barrier layer on sidewalls and adjacent surfaces of the trench, and on sidewalls of the via. The semiconductor device has a doped conductive layer on a surface of the first interconnect layer. The doped conductive layer extends between the sidewalls of the via. The semiconductor device further includes a conductive material on the barrier layer in both the via and the trench. The conductive material is on the doped conductive layer disposed on the surface of the first interconnect layer.
Abstract:
Methods for fabricating a fin in a fin field effect transistor (FinFET), include exposing a single crystal fin structure coupled to a substrate of the FinFET. The single crystal fin structure is of a first material. The method further includes implanting a second material into the exposed single crystal fin structure at a first temperature. The first temperature reduces amorphization of the single crystal fin structure. The implanted single crystal fin structure comprises at least 20% of the first material. The method also includes annealing the implanted fin structure at a second temperature. The second temperature reduces crystal defects in the implanted fin structure to form the fin.