Abstract:
In some embodiments, the present disclosure relates to a method of bump metrology The method is performed by forming a through-substrate-via within a substrate, forming a plurality of metal interconnect layers within a dielectric structure over the substrate, and forming a bump on the plurality of metal interconnect layers. One or more substrate warpage parameters of the substrate are measured and an initial position of a lens within a substrate metrology module is calculated based upon the one or more substrate warpage parameters. The lens is then moved to the initial position, and a height and a width of the bump are measured using the substrate metrology module after moving the lens to the initial position.
Abstract:
A method of solid precursor delivery for a vapor deposition process is provided. In some embodiments, a precursor ampoule is provided including a solid precursor arranged in the precursor ampoule. A solvent is added to the precursor ampoule including one or more ionic liquids to dissolve chemical species of the solid precursor and to form a liquid precursor. A carrier gas is applied into the liquid precursor through an inlet of the precursor ampoule. A gas precursor is generated at an upper region of the precursor ampoule by vaporization of the liquid precursor. The chemical species of the solid precursor are delivered into a vapor deposition chamber by the carrier gas. The chemical species of the solid precursor is deposited onto a substrate within the vapor deposition chamber.
Abstract:
A system for cleaning a container such as semiconductor wafer carrier includes a housing, a cleaning unit in the housing, an analyzing unit within the housing, and a vacuum unit within the housing. The cleaning unit comprises a cleaning chamber, and is configured to spray a cleaning medium into the container in the cleaning chamber and dry the container. The analyzing unit is configured to analyze air inside the container coming out of the cleaning chamber, and provide a testing result for each ingredient of possible airborne molecular contamination (AMC) and humidity. The vacuum unit comprises a vacuum chamber configured to apply vacuum onto a container when the testing result for an ingredient is higher than a respective threshold.
Abstract:
A system for orienting a semiconductor wafer. The system includes a wafer retaining device configured to retain a semiconductor wafer, a light source configured to emit light toward an edge exclusion area of the wafer, and a lens configured to direct and focus light emitted from the light source at a subsurface first part of a first portion of the wafer to alter a crystalline structure of the subsurface first part and form a subsurface mark that is detectable using light of a predetermined wavelength, a predetermined transmittance through the wafer, and at a predetermined reflectance angle relative to an axis of rotation of the wafer and based on the predetermined wavelength.
Abstract:
A localized chemical mechanical polishing (CMP) platform is provided. A table is configured to support a workpiece with a to-be-polished surface. A polishing pad is spaced from the table with a width less than about half that of the table. The polishing pad is configured to individually polish rough regions of hillocks or valleys on the to-be-polished surface. A slurry distribution system is configured to apply slurry to an interface between the polishing pad and the workpiece. A cleaning system is configured to clean the workpiece in situ on the table. A drying system is configured to dry the workpiece in situ on the table. A method for CMP with local profile control and a system with local profile control are also provided.
Abstract:
An apparatus and a method for controlling critical dimension (CD) of a circuit is provided. An apparatus includes a controller for receiving CD measurements at respective locations in a circuit pattern in an etched film on a first substrate and a single wafer chamber for forming a second film of the film material on a second substrate. The single wafer chamber is responsive to a signal from the controller to locally adjust a thickness of the second film based on the measured CD's. A method provides for etching a circuit pattern of a film on a first substrate, measuring CD's of the circuit pattern, adjusting a single wafer chamber to form a second film on a second semiconductor substrate based on the measured CD. The second film thickness is locally adjusted based on the measured CD's.
Abstract:
A system for cleaning a container such as semiconductor wafer carrier includes a housing, a cleaning unit in the housing, an analyzing unit within the housing, and a vacuum unit within the housing. The cleaning unit comprises a cleaning chamber, and is configured to spray a cleaning medium into the container in the cleaning chamber and dry the container. The analyzing unit is configured to analyze air inside the container coming out of the cleaning chamber, and provide a testing result for each ingredient of possible airborne molecular contamination (AMC) and humidity. The vacuum unit comprises a vacuum chamber configured to apply vacuum onto a container when the testing result for an ingredient is higher than a respective threshold.
Abstract:
A method of selectively removing silicon nitride is provided. The method includes: providing a wafer having silicon nitride on a surface of the wafer; providing a mixture of phosphoric acid and a silicon-containing material; and delivering the mixture to the surface of the wafer to remove the silicon nitride. Single wafer etching apparatuses of selectively removing silicon nitride are also provided.
Abstract:
An apparatus and a method for controlling critical dimension (CD) of a circuit is provided. An apparatus includes a controller for receiving CD measurements at respective locations in a circuit pattern in an etched film on a first substrate and a single wafer chamber for forming a second film of the film material on a second substrate. The single wafer chamber is responsive to a signal from the controller to locally adjust a thickness of the second film based on the measured CD's. A method provides for etching a circuit pattern of a film on a first substrate, measuring CD's of the circuit pattern, adjusting a single wafer chamber to form a second film on a second semiconductor substrate based on the measured CD. The second film thickness is locally adjusted based on the measured CD's.
Abstract:
The present disclosure relates to a method of bump metrology that relies upon advanced process control (APC) to provide substrate warpage parameters describing a warpage of a substrate to a bump metrology module to improve focus of the bump metrology module. In some embodiments, the method measures one or more substrate warpage parameters of a semiconductor substrate. An initial focal height of a lens of a bump metrology module is calculated based upon the measured substrate warpage parameters. The lens of the bump metrology module is then placed at the initial focal height, and height and critical dimensions of a plurality of bumps on the semiconductor substrate are subsequently measured using the lens. By providing the substrate warpage parameters to the bump metrology module, the bump metrology module can use real-time process control to account for wafer warpage, thereby improving throughput and yield.