Abstract:
An (Al, Ga, In)N and ZnO direct wafer bonded light emitting diode (LED), wherein light passes through electrically conductive ZnO. Flat and clean surfaces are prepared for both the (Al, Ga, In)N and ZnO wafers. A wafer bonding process is then performed between the (Al, Ga, In)N and ZnO wafers, wherein the (Al, Ga, In)N and ZnO wafers are joined together and then wafer bonded in a nitrogen ambient under uniaxial pressure at a set temperature for a set duration. After the wafer bonding process, ZnO is shaped for increasing light extraction from inside of LED.
Abstract:
An enhancement mode High Electron Mobility Transistor (HEMT) comprising a p-type nitride layer between the gate and a channel of the HEMT, for reducing an electron population under the gate. The HEMT may also comprise an Aluminum Nitride (AlN) layer between an AlGaN layer and buffer layer of the HEMT to reduce an on resistance of a channel.
Abstract:
An (Al, Ga, In)N and ZnO direct wafer bonded light emitting diode (LED), wherein light passes through electrically conductive ZnO. Flat and clean surfaces are prepared for both the (Al, Ga, In)N and ZnO wafers. A wafer bonding process is then performed between the (Al, Ga, In)N and ZnO wafers, wherein the (Al, Ga, In)N and ZnO wafers are joined together and then wafer bonded in a nitrogen ambient under uniaxial pressure at a set temperature for a set duration. After the wafer bonding process, ZnO is shaped for increasing light extraction from inside of LED.
Abstract:
A method for fabricating an electronic device, comprising wafer bonding a first semiconductor material to a III-nitride semiconductor, at a temperature below 550° C., to form a device quality heterojunction between the first semiconductor material and the III-nitride semiconductor, wherein the first semiconductor material is different from the III-nitride semiconductor and is selected for superior properties, or preferred integration or fabrication characteristics in the injector region as compared to the III-nitride semiconductor.
Abstract:
A flip-chip integrated circuit and method for fabricating the integrated circuit are disclosed. A method according to the invention comprises forming a plurality of active semiconductor devices on a wafer and separating the active semiconductor devices. Passive components and interconnections are formed on a surface of a circuit substrate and at least one conductive via is formed through the circuit substrate. At least one of the active semiconductor devices is flip-chip mounted on the circuit substrate with at least one of the bonding pads in electrical contact with one of the conductive vias. A flip-chip integrated circuit according to the present invention comprises a circuit substrate having passive components and interconnections on one surface and can have a conductive via through it. An active semiconductor device is flip-chip mounted on the circuit substrate, one of the at least one vias is in contact with one of the at least one the device's terminals. The present invention is particularly applicable to Group III nitride based active semiconductor devices grown on SiC substrates. The passive components and interconnects can then be formed on a lower cost, higher diameter wafer made of GaAs or Si. After separation, the Group III devices can be flip-chip mounted on the GaAs or Si substrate.
Abstract:
A process for fabricating single or multiple gate field plates using consecutive steps of dielectric material deposition/growth, dielectric material etch and metal evaporation on the surface of a field effect transistors. This fabrication process permits a tight control on the field plate operation since dielectric material deposition/growth is typically a well controllable process. Moreover, the dielectric material deposited on the device surface does not need to be removed from the device intrinsic regions: this essentially enables the realization of field-plated devices without the need of low-damage dielectric material dry/wet etches. Using multiple gate field plates also reduces gate resistance by multiple connections, thus improving performances of large periphery and/or sub-micron gate devices.
Abstract:
Methods of controlling stress in GaN films deposited on silicon and silicon carbide substrates and the films produced therefrom are disclosed. A typical method comprises providing a substrate and depositing a graded gallium nitride layer on the substrate having a varying composition of a substantially continuous grade from an initial composition to a final composition formed from a supply of at least one precursor in a growth chamber without any interruption in the supply. A typical semiconductor film comprises a substrate and a graded gallium nitride layer deposited on the substrate having a varying composition of a substantially continuous grade from an initial composition to a final composition formed from a supply of at least one precursor in a growth chamber without any interruption in the supply.
Abstract:
An LED made from a wide band gap semiconductor material and having a low resistance p-type confinement layer with a tunnel junction in a wide band gap semiconductor device is disclosed. A dissimilar material is placed at the tunnel junction where the material generates a natural dipole. This natural dipole is used to form a junction having a tunnel width that is smaller than such a width would be without the dissimilar material. A low resistance p-type confinement layer having a tunnel junction in a wide band gap semiconductor device may be fabricated by generating a polarization charge in the junction of the confinement layer, and forming a tunnel width in the junction that is smaller than the width would be without the polarization charge. Tunneling through the tunnel junction in the confinement layer may be enhanced by the addition of impurities within the junction. These impurities may form band gap states in the junction.
Abstract:
Methods for the heteroepitaxial growth of smooth, high quality films of N-face GaN film grown by MOCVD are disclosed. Use of a misoriented substrate and possibly nitridizing the substrate allow for the growth of smooth N-face GaN and other Group III nitride films as disclosed herein. The present invention also avoids the typical large (μm sized) hexagonal features which make N-face GaN material unacceptable for device applications. The present invention allows for the growth of smooth, high quality films which makes the development of N-face devices possible.
Abstract:
A method for forming non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices. Non-polar (11 20) a-plane GaN layers are grown on an r-plane (1 102) sapphire substrate using MOCVD. These non-polar (11 20) a-plane GaN layers comprise templates for producing non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices.