摘要:
A semiconductor package and a method for fabricating the same are provided. The method includes providing a substrate having recognition points and a heat sink having openings, and placing the heat sink on the substrate with the recognition points being exposed through the openings; using a checking system to inspect the recognition points through the openings so as to ensure that the heat sink is placed at a predetermined position on the substrate; and attaching the heat sink to the substrate via an adhesive. By the above semiconductor package and method, there is no need to form positioning holes in the substrate such that any adverse effect on the circuit layout and reliability of the semiconductor package is avoided, and any positional shifting of the heat sink relative to the substrate can be determined in a real time manner.
摘要:
The invention provides a heat-dissipating package structure and a fabrication method thereof. The fabrication method includes the steps of mounting and electrically connecting a semiconductor chip to a chip carrier; mounting on the semiconductor chip a heat-dissipating member having an interface layer; performing a molding process to form an encapsulant that encapsulates the semiconductor chip and the heat-dissipating member; cutting the chip carrier and the encapsulant according to a predetermined package size and forming an oblique angle on a top edge of the encapsulant to partially expose an edge of the heat-dissipating member; and removing the encapsulant located on the interface layer. During the molding process, the formed encapsulant can cover the interface layer due to a spacing height exists between the interface layer and the top wall of the mold cavity, thereby preventing damages to the semiconductor chip pressed by the mold and the problem of flash.
摘要:
A heat dissipation semiconductor package includes a chip carrier, a semiconductor chip, a heat conductive adhesive, a heat dissipation member, and an encapsulant. The semiconductor chip is flip-chip mounted on the chip carrier and defined with a heat conductive adhesive mounting area. Periphery of the heat adhesive mounting area is spaced apart from edge of the semiconductor chip. The heat dissipation member is mounted on the heat conductive adhesive formed in the heat conductive adhesive mounting area. The encapsulant formed between the chip carrier and the heat dissipation member encapsulates the semiconductor chip and the heat conductive adhesive, and embeds edges of the active surface and non-active surface and side edge of the semiconductor chip, thereby increasing bonding area between the encapsulant and the semiconductor chip. The side edges of the heat conductive adhesive and the semiconductor chip are not flush with each other, thereby preventing propagation of delamination.
摘要:
A method for fabricating semiconductor packages is proposed. A plurality of substrates each having a chip thereon are prepared. Each substrate has similar length and width to the predetermined length and width of the semiconductor package. A carrier having a plurality of openings is prepared. Each opening is larger in length and width than the substrate. The substrates are positioned in the corresponding openings, and gaps between the substrates and the carrier are sealed. A molding process is performed to form an encapsulant over each opening to encapsulate the chip. An area on the carrier covered by the encapsulant is larger in length and width than the opening. After performing a mold-releasing process, a plurality of the semiconductor packages are formed by a singulation process to cut along substantially edges of each substrate according to the predetermined size of the semiconductor package. A waste of substrate material is avoided.
摘要:
A method for fabricating semiconductor packages is proposed. A plurality of substrates each having a chip thereon are prepared. Each substrate has similar length and width to the predetermined length and width of the semiconductor package. A carrier having a plurality of openings is prepared. Each opening is larger in length and width than the substrate. The substrates are positioned in the corresponding openings, and gaps between the substrates and the carrier are sealed. A molding process is performed to form an encapsulant over each opening to encapsulate the chip. An area on the carrier covered by the encapsulant is larger in length and width than the opening. After performing a mold-releasing process, a plurality of the semiconductor packages are formed by a singulation process to cut along substantially edges of each substrate according to the predetermined size of the semiconductor package. A waste of substrate material is avoided.
摘要:
A method for fabricating semiconductor packages is disclosed, including mounting and electrically connecting a semiconductor chip onto a chip carrier; mounting a heat-dissipating structure on the semiconductor chip; placing the heat-dissipating structure into a mold cavity for filling therein a packaging material to form an encapsulant, wherein the heat-dissipating structure has a heat spreader having a size larger than that of the predetermined size of the semiconductor package, a covering layer formed on the, and a plurality of protrusions formed on edges of the covering layer that are free from being corresponding in position to the semiconductor chip, such that the protrusions can abut against a top surface of the mold cavity to prevent the heat spreader from being warped; and finally performing a singulation process according to the predetermined size and removing the encapsulant formed on the covering layer to form the desired semiconductor package. Also, this invention discloses a heat-dissipating structure applicable to the method described above.
摘要:
An electronic carrier board and a package structure thereof are provided. The electronic carrier board includes a carrier, at least one pair of bond pads formed on the carrier, and a protective layer covering the carrier. An opening is formed in the protective layer to expose at least three sides of each of the paired bond pads. The protective layer includes at least one independent residual portion located in the opening and between the paired bond pads, such that an electronic component is mounted on the independent residual portion and electrically connected to the bond pads. A groove without a dead space is formed between the electronic component and the carrier, such that a molding compound for encapsulating the electronic component can flow through the groove to fill the opening and a space under the electronic component and encapsulate the at least three sides of each of the bond pads.
摘要:
A heat dissipation package structure and method for fabricating the same are disclosed, which includes mounting and electrically connecting a semiconductor chip to a chip carrier through its active surface; mounting a heat dissipation member having a heat dissipation section and a supporting section on the chip carrier such that the semiconductor chip can be received in the space formed by the heat dissipation section and the supporting section, wherein the heat dissipation section has an opening formed corresponding to the semiconductor chip; forming an encapsulant to encapsulate the semiconductor chip, and the heat dissipation member; and thinning the encapsulant to remove the encapsulant formed on the semiconductor chip to expose inactive surface of the semiconductor chip and the top surface of the heat dissipation section from the encapsulant. Therefore, the heat dissipation package structure is fabricated through simplified fabrication steps at low cost, and also the problem that the chip is easily damaged in a package molding process of the prior art is overcome.
摘要:
A bump structure of a semiconductor package and a method for fabricating the same are provided. The bump structure is used to connect a semiconductor element to a carrier of the semiconductor package. The fabrication method primarily employs an electroplating process to form the bump structure including an under bump metallurgy (UBM) layer, at least one I-shaped conductive pillar, and a solder material. This allows fine-pitch electrical connection pads to be arranged in the semiconductor package, and also provides an enhanced support structure and a sufficient height between the semiconductor element and the carrier.
摘要:
A heat dissipation package structure and method for fabricating the same are disclosed, which includes mounting and electrically connecting a semiconductor chip to a chip carrier through its active surface; mounting a heat dissipation member having a heat dissipation section and a supporting section on the chip carrier such that the semiconductor chip can be received in the space formed by the heat dissipation section and the supporting section, wherein the heat dissipation section has an opening formed corresponding to the semiconductor chip; forming an encapsulant to encapsulate the semiconductor chip, and the heat dissipation member; and thinning the encapsulant to remove the encapsulant formed on the semiconductor chip to expose inactive surface of the semiconductor chip and the top surface of the heat dissipation section from the encapsulant. Therefore, the heat dissipation package structure is fabricated through simplified fabrication steps at low cost, and also the problem that the chip is easily damaged in a package molding process of the prior art is overcome.