Abstract:
A light-emitting device of little aging electric leakage and high luminous efficiency and fabrication thereof, in which, the light-emitting device includes: a semiconductor epitaxial laminated layer that comprises an N-type semiconductor layer, a P-type semiconductor layer and a light-emitting layer between the N-type semiconductor layer and the P-type semiconductor layer, the surface of which has deflected dislocation; electromigration resistant metal that fills into the deflected dislocation over the N-type or/and P-type semiconductor layer surface through pretreatment to block the electromigration channel formed over the semiconductor epitaxial laminated layer due to deflected dislocation to eliminate electric leakage.
Abstract:
A surface-mounted light-emitting device is fabricated by epitaxial growth: forming the LED epitaxial structure over a growth substrate through epitaxial growth; chip fabrication: determining P and N electrode regions and an isolating region over the LED epitaxial structure surface and fabricating the P and N electrode pads and the insulator over the P and N electrode regions and the isolating region, wherein the P and N electrode pads have sufficient thicknesses to support the LED epitaxial structure, and the insulator is formed between the P and N electrode pads to prevent the P and N electrode pads from a short circuit; removing the growth substrate and unitizing the LED epitaxial structure to form the chip; and SMT packaging: providing the supporting substrate and directly mounting the P and N electrode pads of the chip over the supporting substrate through SMT packaging to thereby form the surface-mounted LED light-emitting device.
Abstract:
A light-emitting device includes a base having an insulating part and a metal block; a light-emitting diode (LED) chip over the base; a water soluble paste between the LED chip and the base metal block for chip fixing and heat conduction; packaging glue covering the LED chip; and the LED chip bottom, water soluble paste and the base metal block form an all-metal thermal conducting path to achieve low a thermal resistance.
Abstract:
A vertical LED with current blocking structure and its associated fabrication method involve an anisotropic conductive material and a conductive substrate with concave-convex structure. The anisotropic conductive material forms a bonding layer with vertical conduction and horizontal insulation between the concave-convex substrate and the light-emitting epitaxial layer, thereby forming a vertical LED with current blocking function.
Abstract:
A surface-mounted light-emitting device includes: a LED epitaxial structure having two opposite surfaces, wherein the first surface is a light-emitting surface; P and N electrode pads over the second surface of the epitaxial structure, which have sufficient thickness to support the LED epitaxial structure, and the P and N electrode pads have two opposite surfaces respectively, in which, the first surface is approximate to the LED epitaxial structure; an insulator between the P and N pads to prevent the P and N electrode pads from short circuit; and the P and N electrode pads are directly applied in the SMT package. Some embodiments allow structural changes compared with conventional SMT package type by directly mounting the chip over the supporting substrate through an electrode pad. In addition, soldering is followed after the chip process without package step, which is mainly applicable to flip-chip LED device.
Abstract:
The laser device includes a substrate, a laser element disposed on the substrate for emitting a laser light ray, a light guide member disposed on the substrate, and a wavelength conversion layer. The light guide member is light-transmissible and thermally conductive, and has at least one reflection surface for reflecting the laser light ray from the laser element so as to change travelling direction of the laser light ray. The wavelength conversion layer converts wavelength of the laser light ray from the light guide member to result in a laser beam, and contacts the light guide member so that heat from the wavelength conversion layer is transferred to the substrate through the light guide member.
Abstract:
The laser device includes a substrate, a laser element disposed on the substrate for emitting a laser light ray, a light guide member disposed on the substrate, and a wavelength conversion layer. The light guide member is light-transmissible and thermally conductive, and has at least one reflection surface for reflecting the laser light ray from the laser element so as to change travelling direction of the laser light ray. The wavelength conversion layer converts wavelength of the laser light ray from the light guide member to result in a laser beam, and contacts the light guide member so that heat from the wavelength conversion layer is transferred to the substrate through the light guide member.
Abstract:
A light-emitting diode (LED) device includes a substrate, an electrically conductive layer, a first LED chip, and an anti-electrostatic discharge element. The substrate has opposite upper and lower surfaces. The electrically conductive layer is formed on the upper surface of the substrate, and has first and second regions that are electrically separated from each other by a trench structure. The trench structure has a first segment and a second segment which connects and is not collinear with the first segment. The first LED chip is disposed across the first segment, and the anti-electrostatic discharge element is disposed across the second segment, both interconnecting the first and second regions.
Abstract:
A light-emitting diode (LED) package includes a substrate with upper and lower surfaces, including: a metal block; an electrically insulating region surrounding at least a portion of the metal block; an LED chip mounted on the substrate and in electrical communication with the metal block; and an encapsulant covering at least an upper surface of the LED chip. A light-emitting system includes a plurality of light-emitting diode (LED) chips; and a package support for the plurality of LED chips.
Abstract:
A light-emitting diode (LED) includes: an epitaxial structure having an upper and a lower surface, wherein the upper surface comprises a light-emitting surface; at least one insulating layer over the lower surface; and an electrode pad layer over the at least one insulating layer; wherein: the electrode pad layer comprises a P electrode region and an N electrode region; and the at least one insulating layer is configured to adjust a distribution of the P and N electrode regions over the electrode pad layer.