Abstract:
Provided are a high-speed superluminescent diode, a method of manufacturing the same, and a wavelength-tunable external cavity laser including the same. The superluminescent diode includes a substrate having an active region and an optical mode size conversion region, waveguides including an ridge waveguide in the active region and a deep ridge waveguide in the optical mode size conversion region connected to the active waveguide, an electrode disposed on the ridge waveguide; planarizing layers disposed on sides of the ridge waveguide and the deep ridge waveguide on the substrate, and a pad electrically connected to the electrode, the pad being disposed on the planarizing layers outside the active waveguide.
Abstract:
An optical amplifier includes a passive waveguide region and an active waveguide region. The passive waveguide region is configured to receive an incident optical signal and adjust a mode of the optical signal. The active waveguide region is integrated to the passive waveguide region and configured to perform gain modulation on the optical signal received from the passive waveguide region by changing density of carriers in response to a current applied to the active waveguide region. Internal loss of the active waveguide region is adjusted to produce a resonance effect and thereby to increase bandwidth of the active waveguide. Therefore, the optical amplifier can have a wide bandwidth under a low-current condition.
Abstract:
Provided is a wavelength tunable external cavity laser (laser beam) generating device. The wavelength tunable external cavity laser generating devices includes: an optical amplifier, a comb reflector, and an optical signal processor connected in series on a first substrate; and an external wavelength tunable reflector disposed on a second substrate adjacent to the first substrate and connected to the optical amplifier, wherein the comb reflector includes: a waveguide disposed on the first substrate; a first diffraction grating disposed at one end of the waveguide adjacent to the optical amplifier; and a second diffraction grating disposed at the other end of the waveguide adjacent to the optical signal processor, wherein the optical amplifier, the comb reflector, and the optical signal processor constitute a continuous waveguide.
Abstract:
A wavelength-tunable external cavity laser generating device is provided. The wavelength-tunable external cavity laser generating device includes a reflection-type multi-mode interferometer, an optical amplifier disposed between the reflection-type multi-mode interferometer and an external wavelength-tunable reflector to amplify light, and an optical signal processor configured to process light from the reflection-type multi-mode interferometer. The reflection-type multi-mode interferometer includes a multi-mode waveguide, an input waveguide connecting the optical amplifier and one end of the multi-mode waveguide, and an output waveguide configured to connect the optical signal processor and the other end of the multi-mode waveguide.
Abstract:
Provided is an optical device module that can improve miniaturization and integration. The optical device module includes a semiconductor optical amplifier having a buried structure and including a first active layer buried in a clad layer disposed on a first substrate, an optical modulator in which a sidewall of a second active layer disposed in a direction of the first active layer on a second substrate junctioned to the first substrate is exposed, the optical modulator having a ridge structure, and at least one multi-mode interference coupler in which the second active layer junctioned to the first active layer is buried in the clad layer, the multi-mode interference coupler sharing the second active layer on the second substrate between the optical modulator and the semiconductor optical amplifier and integrated with the second optical device.
Abstract:
Provided is a semiconductor laser diode having a waveguide lens. The semiconductor laser diode includes at least one first waveguide having a narrow width, at least one second waveguide having a wide width wider, and at least one waveguide lens having an increasing width from the first waveguide toward the second waveguide and connecting the first waveguide to the second waveguide. Sidewalls of the waveguide lens connecting the first waveguide to the second waveguide may be curved. The second waveguide may be a waveguide providing an optical gain.
Abstract:
A semiconductor optical device includes a first mode converting core, a light amplification core, a second mode converting core, and a light modulation core disposed in a first mode converting region, a light amplification region, a second mode converting region, and a light modulating region of a semiconductor substrate, respectively, and a current blocking section covering at least sidewalls and a top surface of the light amplification core. The first mode converting core, the light amplification core, the second mode converting core, and the light modulation core are arranged along one direction in the order named, and are connected to each other in butt joints. The current blocking section includes first, second, and third cladding patterns sequentially stacked. The second cladding pattern is doped with dopants of a first conductivity type, and the first and third cladding patterns are doped with dopants of a second conductivity type.
Abstract:
Provided is a wavelength-tunable external cavity laser. The wavelength-tunable external cavity laser includes a housing, a planar lightwave circuit (PLC) device disposed within the housing, a pump light source disposed at a side of the PLC device within the housing, and a modulation part disposed at the other side of the PLC device facing the pump light source within the housing.
Abstract:
Disclosed is a system of a dynamic range three-dimensional image, including: an optical detector including a gain control terminal capable of controlling an optical amplification gain; a pixel detecting module for detecting a pixel signal for configuring an image by receiving an output of the optical detector; a high dynamic range (HDR) generating module for acquiring a dynamic range image by generating a signal indicating a saturation degree of the pixel signal and combining the pixel signal based on the pixel signal detected by the pixel detecting module; and a gain control signal generating module generating an output signal for supplying required voltage to the gain control terminal of the optical detector based on the magnitude of the signal indicating the saturation degree of the pixel signal.
Abstract:
Provided is an external cavity laser light source. The light source includes a substrate, an optical waveguide, and a current blocking layer. The optical waveguide includes a passive waveguide layer, a lower clad layer, an active layer, and an upper clad layer that are sequentially stacked on the substrate and is divided into regions including a linear active waveguide region, a bent active waveguide region, a tapered waveguide region, and a window region. The current blocking layer was formed an outside of the active layer to reduce leakage current. The linear and bent active waveguide regions have a buried heterostructure (BH), and the tapered waveguide region and the window region have a buried ridge stripe (BRS) structure. The passive waveguide layer a width substantially equal to a maximal width of the tapered waveguide region at least in the bent active waveguide region, the tapered waveguide region, and the window region.