Abstract:
The present invention provides an inductively coupled, magnetically enhanced ion beam source, suitable to be used in conjunction with probe-forming optics to produce an ion beam without kinetic energy oscillations induced by the source.
Abstract:
An ion source includes an ion chamber housing defining an ion source chamber, the ion chamber housing having a side with a plurality of apertures. The ion source also includes an antechamber housing defining an antechamber. The antechamber housing shares the side with the plurality of apertures with the ion chamber housing. The antechamber housing has an opening to receive a gas from a gas source. The antechamber is configured to transform the gas into an altered state having excited neutrals that is provided through the plurality of apertures into the ion source chamber.
Abstract:
A ion source comprises: a chamber (45), an injection to inject matter into the chamber, wherein said matter comprises at least a first species, a tip with an apex located in the chamber, wherein the apex has a surface made of a metallic second species, a generator to generate ions of said species, and a regulation system adapted to set operative conditions of the chamber to alternatively generate ions from the gaseous first species, and ions from the non-gaseous metallic second species.
Abstract:
A focused ion beam (FIB) system is disclosed, comprising an inductively coupled plasma ion source, an insulating plasma chamber containing the plasma, a conducting source biasing electrode in contact with the plasma and biased to a high voltage to control the ion beam energy at a sample, and a plurality of apertures. The plasma within the plasma chamber serves as a virtual source for an ion column comprising one or more lenses which form a focused ion beam on the surface of a sample to be imaged and/or FIB-processed. The plasma is initiated by a plasma igniter mounted near or at the column which induces a high voltage oscillatory pulse on the source biasing electrode. By mounting the plasma igniter near the column, capacitive effects of the cable connecting the source biasing electrode to the biasing power supply are minimized. Ion beam sputtering of the apertures is minimized by proper aperture materials selection.
Abstract:
A focused ion beam (FIB) system is disclosed, comprising an inductively coupled plasma ion source, an insulating plasma chamber containing the plasma, a conducting source biasing electrode in contact with the plasma and biased to a high voltage to control the ion beam energy at a sample, and a plurality of apertures. The plasma within the plasma chamber serves as a virtual source for an ion column comprising one or more lenses which form a focused ion beam on the surface of a sample to be imaged and/or FIB-processed. The plasma is initiated by a plasma igniter mounted near or at the column which induces a high voltage oscillatory pulse on the source biasing electrode. By mounting the plasma igniter near the column, capacitive effects of the cable connecting the source biasing electrode to the biasing power supply are minimized. Ion beam sputtering of the apertures is minimized by proper aperture materials selection.
Abstract:
An ion source, capable of generating high-density wide ribbon ion beam, utilizing one or more plasma sources is disclosed. In addition to the plasma source(s), the ion source also includes a diffusion chamber. The diffusion chamber has an extraction aperture oriented along the same axis as the dielectric cylinder of the plasma source. In one embodiment, dual plasma sources, located on opposing ends of the diffusion chamber are used to create a more uniform extracted ion beam. In a further embodiment, a multicusp magnetic field is used to further improve the uniformity of the extracted ion beam.
Abstract:
An ion source, capable of generating high-density wide ribbon ion beam, utilizing one or more plasma sources is disclosed. In addition to the plasma source(s), the ion source also includes a diffusion chamber. The diffusion chamber has an extraction aperture oriented along the same axis as the dielectric cylinder of the plasma source. In one embodiment, dual plasma sources, located on opposing ends of the diffusion chamber are used to create a more uniform extracted ion beam. In a further embodiment, a multicusp magnetic field is used to further improve the uniformity of the extracted ion beam.
Abstract:
An ion source is provided that can generate an ion beam in which the width is wide, the beam current is large, and the uniformity of the beam current distribution in the width direction is high, and that can prolong the lifetime of a cathode. The ion source 2a has: a plasma generating chamber 6 having an ion extraction port 8 extending in the X direction; a magnet 14 which generates a magnetic field 16 extending along the X direction, in the plasma generating chamber 6; indirectly-heated cathodes 20 which are placed respectively on the both sides of the plasma generating chamber 6 in the X direction, and which are used for generating a plasma i0 in the chamber 6, and increasing or decreasing the density of the whole of the plasma 10; and plural filament cathodes 32 which are juxtaposed in the X direction in the plasma generating chamber 6, and which are used for generating the plasma i0 in the chamber 6, and controlling the density distribution of the plasma 10.
Abstract:
A device for replenishing ionizable material in a field ionization apparatus is disclosed. The device comprises a heatable reservoir containing the ionizable material, a field ionization electrode structure, and a channel being in fluid communication with said heatable reservoir. The heatable reservoir and the channel are designed and constructed such that when the heatable reservoir is heated to an evaporation temperature of the ionizable material, a flux of vaporized ionizable material is directed along the channel to a tip of the field ionization electrode structure.
Abstract:
An apparatus for producing ions can include an emitter having a first end and a second end. The emitter can be coated with an ionic liquid room-temperature molten salt. The apparatus can also include a power supply and a first electrode disposed downstream relative to the first end of the emitter and electrically connected to a first lead of the power supply. The apparatus can also include a second electrode disposed downstream relative to the second end of the emitter and electrically connected to a second lead of the power supply.