Abstract:
A microelectronic package of the present description may comprises a first microelectronic device having at least one row of connection structures electrically connected thereto and a second microelectronic device having at least one row of connection structures electrically connected thereto, wherein the connection structures within the at least one first microelectronic device row are aligned with corresponding connection structures within the at least one second microelectronic device row in an x-direction. An interconnect comprising an interconnect substrate having a plurality of electrically isolated conductive traces extending in the x-direction on a first surface of the interconnect substrate may be attached to the at least one first microelectronic device connection structure row and the at least one second microelectronic device connection structure row, such that at least one interconnect conductive trace forms a connection between a first microelectronic device connection structure and its corresponding second microelectronic device connection structure.
Abstract:
Embodiments of the present disclosure are directed towards an integrated circuit (IC) package having first and second dies with first and second input/output (I/O) interconnect structures, respectively. The IC package may include a bridge having first and second electrical routing features coupled to a portion of the first and second I/O interconnect structures, respectively. In embodiments, the first and second electrical routing features may be disposed on one side of the bridge; and third electrical routing features may be disposed on an opposite side. The first and second electrical routing features may be configured to route electrical signals between the first die and the second die and the third electrical routing features may be configured to route electrical signals between the one side and the opposite side. The first die, the second die, and the bridge may be embedded in electrically insulating material. Other embodiments may be described and/or claimed.
Abstract:
Thermal switch technology is disclosed. In one example, a thermally activated switch can include an electronic substrate base, and first and second electrical contacts coupled to the electronic substrate base. The first and second electrical contacts can be movable relative to one another due to thermal expansion or contraction of a material to facilitate contact or separation of the first and second electrical contacts.
Abstract:
An apparatus including a die, a first side of the die including a first type of system level contact points and a second side including a second type of contact points; and a package substrate coupled to the die and the second side of the die. An apparatus including a die, a first side of the die including a plurality of system level logic contact points and a second side including a second plurality of system level power contact points. A method including coupling one of a first type of system level contact points on a first side of a die and a second type of system level contact points on a second side of the die to a package substrate.
Abstract:
A microelectronic package of the present description may comprises a first microelectronic device having at least one row of connection structures electrically connected thereto and a second microelectronic device having at least one row of connection structures electrically connected thereto, wherein the connection structures within the at least one first microelectronic device row are aligned with corresponding connection structures within the at least one second microelectronic device row in an x-direction. An interconnect comprising an interconnect substrate having a plurality of electrically isolated conductive traces extending in the x-direction on a first surface of the interconnect substrate may be attached to the at least one first microelectronic device connection structure row and the at least one second microelectronic device connection structure row, such that at least one interconnect conductive trace forms a connection between a first microelectronic device connection structure and its corresponding second microelectronic device connection structure.
Abstract:
Techniques are disclosed for using synthetic jet technology as an air delivery device for sensing applications. In particular, a synthetic jet device is used to deliver a controlled airflow or other fluidic flow to a sensor measurement area. Such a sensing system can be used to detect accurate concentration of target features present in the ambient surroundings, such as gases, particles, solutions, mixtures, and any other environmental features that can be sensed from a controlled airflow. An example application is air quality monitoring by using one or more synthetic jet devices to deliver a known or otherwise controlled airflow to a sensing area, thereby allowing for detection of harmful or otherwise unacceptable concentrations of particulate matter, gases, or air pollutants. In some embodiments, a synthetic jet device is operatively coupled with a sensor via a flow channel in a common housing, so as to provide a controlled flow sensing system.
Abstract:
Magnetic field shielding material with high relative permeability incorporated into a build-up package, for example to restrict a field of a magnet integrated with the build-up to a target device configured to operate in the field. In embodiments, a first device is physically coupled to the build-up. In embodiments, a magnetic field shielding material is disposed in contact with the build-up and in proximity to the first device to restrict a magnetic field either to a region occupied by the first device or to a region exclusive of the first device. A field shielding material may be disposed within build-up near a permanent magnet also within the build-up to reduce exposure of another device, such as an IC, to the magnetic field without reducing MEMS device exposure.
Abstract:
In one embodiment, a selective layer transfer process includes forming a layer of integrated circuit (IC) components on a first substrate, forming first bonding structures on a second substrate, and partially bonding the first substrate to the second substrate, which includes bonding a first subset of IC components on the first substrate to respective bonding structures on the second substrate. The process also includes forming second bonding structures on a third substrate, where the second bonding structures are arranged in a layout that is offset from the layout of the second substrate. The process further includes partially bonding the first substrate to the third substrate, which includes bonding a second subset of IC components on the first substrate to respective bonding structures on the third substrate.
Abstract:
Hybrid bonded die stacks, related apparatuses, systems, and methods of fabrication are disclosed. One or both of an integrated circuit (IC) die hybrid bonding region and a base substrate hybrid bonding region are surrounded by superhydrophobic structures that have a contact angle not less than 150 degrees. The hybrid bonding regions are brought together with a liquid droplet therebetween, and capillary forces cause the IC die to self-align. The liquid droplet is pinned to the hybrid bonding regions by the superhydrophobic structures. A hybrid bond is formed by evaporating the droplet and a subsequent anneal.
Abstract:
A surface finish on an integrated circuit (IC) die structure or a substrate structure to which an IC die structure is to be bonded has a chemical composition distinct from that of underlying metallization. The surface finish may comprise a Cu—Ni alloy. Optionally, the Cu—Ni alloy may further comprise Mn. Alternatively, the surface finish may comprise a noble metal, such as Pd, Pt, or Ru or may comprise self-assembled monolayer (SAM) molecules comprising Si and C. During the bonding process a biphilic surface on the IC die structure or substrate structure may facilitate liquid droplet-based fine alignment of the IC die structure to a host structure. Prior to bonding, the surface finish may be applied upon a top surface of metallization features and may inhibit oxidation of the top surface exposed to the liquid droplet.