Abstract:
An electronic assembly includes one or more conductive clamps (302, 304, FIG. 3), which are used to supply current to an integrated circuit (IC) package (308). The conductive clamps are attached to a printed circuit (PC) board (312), which supplies the current to the IC package over one clamp, and receives returned current from the IC package over another clamp. Each clamp contacts a contact pad (330) on the surface of the PC board, and contacts another contact pad (334) on the top surface of the IC package. Vias (338, 339) and conductive planes (340, 342) within the package then carry current to and from an IC (e.g., IC 306) connected to the package. In another embodiment, the clamp (904, FIG. 9) holds a conductive structure (902) in place between the PC board contact pad (908) and the IC package contact pad (914), and current is carried primarily over the conductive structure, rather than over the clamp.
Abstract:
A thermistor with positive resistance-to-temperature characteristic used in a overcurrent protection circuit has electrodes on mutually opposite main surfaces and is mounted to a substrate having electrically conductive members such that deterioration of its voltage resistance due to heat emission can be controlled. A spacer with smaller thermal conductivity than the substrate and penetrated by a conductor piece with a small cross-sectional area is inserted between solder materials connecting to one of the thermistor electrodes. The other electrode is contacted by an elongated connecting member through its sectional surface transverse to its longitudinal direction such that the cross-sectional area of electrical conduction is reduced.
Abstract:
An improved multi-chip module includes a main circuit board having an array of electrical interconnection pads to which are mounted a plurality of IC package units. Each IC package unit includes a pair of IC packages, both of which are mounted on opposite sides of a package carrier. The package units may be mounted on one or both sides of the main circuit board. A first primary embodiment of the invention employs a laminar package carrier having a pair of major planar surfaces. Each planar surface incorporates electrical contact pads. One IC package is surface mounted on each major planar surface, by interconnecting the leads of the package with the contact pads on the planar surface, to form the IC package unit. A second primary embodiment of the invention utilizes a carrier substrate which has a pair of recesses for back-to-back surface mounting of the IC package pair. The two IC packages may be in contact with opposite sides of a heat sink layer embedded within the carrier substrate. Each resulting IC package unit is surface mounted to the main circuit board. A third primary embodiment of the invention incorporates features of both the first and second primary embodiments. One of the packages is mounted on a planar surface of the carrier rightside up, while the other package is mounted on the carrier in a recess upside down. Several variants of this embodiment are possible. Either the IC package that is mounted on the planar surface of the carrier, or the IC package that is mounted within the recess, may be mounted adjacent to the main circuit board. In the former case, the adjacent package of the package unit fits within a recess on the main circuit board. In the latter case, the adjacent package of the package unit mounts on a planar surface of the main circuit board. For any of the three primary main embodiments, the carrier may be equipped with its own set of interconnection leads which interface with the interconnection pads on the main circuit board or connection may be made directly between the leads of one package and the interconnection pads of the circuit board.
Abstract:
An improved multi-chip module includes a main circuit board having an array of electrical interconnection pads to which are mounted a plurality of IC package units. Each IC package unit includes a pair of IC packages, both of which are mounted on opposite sides of a package carrier. The package units may be mounted on one or both sides of the main circuit board. A first primary embodiment of the invention employs a laminar package carrier having a pair of major planar surfaces. Each planar surface incorporates electrical contact pads. One IC package is surface mounted on each major planar surface, by interconnecting the leads of the package with the contact pads on the planar surface, to form the IC package unit. A second primary embodiment of the invention utilizes a carrier substrate which has a pair of recesses for back-to-back surface mounting of the IC package pair. The two IC packages may be in contact with opposite sides of a heat sink layer embedded within the carrier substrate. Each resulting IC package unit is surface mounted to the main circuit board. A third primary embodiment of the invention incorporates features of both the first and second primary embodiments. One of the packages is mounted on a planar surface of the carrier right-side up, while the other package is mounted on the carrier in a recess upside down. Several variants of this embodiment are possible. Either the IC package that is mounted on the planar surface of the carrier, or the IC package that is mounted within the recess, may be mounted adjacent to the main circuit board. In the former case, the adjacent package of the package unit fits within a recess on the main circuit board. In the latter case, the adjacent package of the package unit mounts on a planar surface of the main circuit board. For any of the three primary main embodiments, the carrier may be equipped with its own set of interconnection leads which interface with the interconnection pads on the main circuit board or connection may be made directly between the leads of one package and the interconnection pads of the circuit board.
Abstract:
There is a trend in the electronics industry towards a preference for components that can be surface mounted on a carrier, such as a circuit board. By using surface mountable leads on a component together with a “Single-In-Line” technique it is possible to surface mount a component (5) upstanding on a circuit board (7) with the component leads surface mounted on the board. The leads (8) may be bent at their bottom extremities and provided with feet (10) for effective contact with the board. Guide and support pins may be used to hold the component in position during mounting and connecting the component and to brace the leads on the component when mounted on the board.
Abstract:
A thermistor with positive resistance-to-temperature characteristic used in a overcurrent protection circuit has electrodes on mutually opposite main surfaces and is mounted to a substrate having electrically conductive members such that deterioration of its voltage resistance due to heat emission can be controlled. A spacer with smaller thermal conductivity than the substrate and penetrated by a conductor piece with a small cross-sectional area is inserted between solder materials connecting to one of the thermistor electrodes. The other electrode is contacted by an elongated connecting member through its sectional surface transverse to its longitudinal direction such that the cross-sectional area of electrical conduction is reduced.
Abstract:
There is a trend in the electronics industry towards a preference for components that can be surface mounted on a carrier, such as a circuit board. By using surface mountable leads on a component together with a "Single-In-Line" technique it is possible to surface mount a component (5) upstanding on a circuit board (7) with the component leads surface mounted on the board. The leads (8) may be bent at their bottom extremities and provided with feet (10) for effective contact with the board. Guide and support pins may be used to hold the component in position during mounting and connecting the component and to brace the leads on the component when mounted on the board.
Abstract:
A connector equipped with auxiliary solder tabs which are self-adjustable as to height for ensuring coplanarity between solder terminals of the connector and the auxiliary solder tabs. The self-adjustability of the tabs ensures that the tabs will always properly contact a circuit board to which the connector is to be connected, independent of the plane defined by the solder terminal. The connector has at least one extension wall and various embodiments are proposed to achieve a pivotable relationship between the solder tab and the extension wall(s).
Abstract:
A Tape-Automated-Bonding (TAB) package includes a resilient polyimide layer that supports a metal leadframe. A microelectronic circuit die is mounted in a hole in the polyimide layer and interconnected with inner leads of the leadframe. The TAB package is adhered to a support member having spacers that abut against the surface of a printed circuit board (PCB) on which the package is to be mounted and provide a predetermined spacing between the leadframe and the surface. Outer leads that protrude from the leadframe are bent into a shape so as extend, in their free state, toward the surface at least as far as the spacers. The package and support member assembly is placed on the PCB surface, and the combination of the weight of the assembly, the resilience of the leads and the preset standoff height enable the leads to resiliently deform so that the spacers abut against the surface and the leads conformably engage with the surface for soldering or other ohmic connection to conjugate bonding pads on the surface. The support member can be formed with lead retainers around which the leads extend to form loops that resiliently and conformably engage with the surface as the assembly is lowered thereon. The support member maintains coplanarity, adds weight to the package, pre-sets the standoff to protect the formed outer leads during surface mounting and enables the package to be shipped without a separate carrier.