Abstract:
A MOS-gated power device includes a plurality of elementary functional units, each elementary functional unit including a body region of a first conductivity type formed in a semiconductor material layer of a second conductivity type having a first resistivity value. Under each body region a respective lightly doped region of the second conductivity type is provided having a second resistivity value higher than the first resistivity value.
Abstract:
A method of manufacturing an electronic structure, which structure comprises a first power device and a second unidirectional device, both integrated in the same protective package. The first device having at least first and second electrodes of the first device, with said first electrode of the first device being attached to the package. The second device having first and second electrodes of the second device, wherein the first electrode of the second device is superposed on the second electrode of the first device and connected electrically to the second electrode of the first device.
Abstract:
A method for forming by molding a plastic protective package for an electronic integrated circuit that includes an electronic device activated from the outside of said protective package. The method includes: dispensing a covering layer of elastic material on a portion of said electronic device; shaping said covering layer to form a projecting portion from a surface of said electronic device; molding said electronic integrated circuit in said plastic protective package using a mold including at least a half-mold abutting against said projecting portion; and obtaining a hole or a window formed in alignment with said projecting portion in said protective package.
Abstract:
A reading circuit for semiconductor non-volatile memories connected to at least one selected cell and at least one reference cell, the circuit including current/voltage conversion circuits receiving at the input thereof a first current flowing through the selected cell and a second current flowing through the reference cell and providing respectively on a first circuit node a first selected cell voltage and on a second node a second reference cell voltage, as well as at least one differential amplifier, connected at the input of the first and the second nodes and having an output terminal effective to provide a logic signal correlated to the selected cell information. The reading circuit also includes at least a first voltage-controlled discharge switch circuit connected at the input of the first node and to a voltage reference, a second voltage-controlled discharge switch circuit connected at the input of the second node and to the voltage reference, as well as a first and a second voltage comparator circuits receiving at the input thereof the first selected cell voltage and the second reference cell voltage. Moreover, advantageously according to the invention, the comparator circuits are effective to control the switch circuits.
Abstract:
A contact structure for semiconductor devices which are integrated on a semiconductor layer is provided. The structure comprises at least one MOS device and at least one capacitor element where the contact is provided at an opening formed in an insulating layer which overlies at least in part the semiconductor layer. Further, the opening has its surface edges, walls and bottom coated with a metal layer and filled with an insulating layer.
Abstract:
A microelectromechanical structure, usable in an optical switch for directing a light beam towards one of two light guide elements, including: a mirror element, rotatably movable; an actuator, which can translate; and a motion conversion assembly, arranged between the mirror element and the actuator. The motion conversion assembly includes a projection integral with the mirror element and elastic engagement elements integral with the actuator and elastically loaded towards the projection. The elastic engagement elements are formed by metal plates fixed to the actuator at one of their ends and engaging the projection with an abutting edge countershaped with respect to the projection.
Abstract:
A processor is provided with a set of instructions formed, in general, of an operation section and an operand section. For at least one of the instructions, the operand section represents operation control signals of the processor. In this way, an extension of the set of instructions can be achieved for tailoring the set of instructions to the user's own requirements. Consequently, the processor control unit should be capable of coupling its outputs to its inputs upon receiving one such instruction, thereby to transfer such internal operation control signals without interpretation.
Abstract:
The device is for driving and controlling a rotation motor and a voice coil motor for a hard disk drive system that includes a disk and an arm carrying a read/write head to be positioned with respect thereto. A duty-cycle control loop including a current sensing circuit is connected to the voice coil motor, and an arm position control loop including a speed detection circuit is also connected to the voice coil motor. The duty-cycle control loop and the arm position control loop are digitally implemented by a DSP as a function of digital data representing a first analog signal generated by the current sensing circuit representative of current conducting in a winding of the voice coil motor, and a second analog signal generated by the speed detection circuit representative of an instant speed of the voice coil motor.
Abstract:
The selection/deselection circuit is for non-volatile memory word lines having a decoding line connected between a supply voltage and ground, and including a series of decoding transistors of the same conductivity controlled by respective selection signals and at least a load transistor whose conductivity is opposite to the conductivity of the decoding transistors in series with the series of transistors and biased by a control voltage. The load transistor produces an activating or deactivating voltage of a memory word line, and a circuit for controlling the load transistor is provided. Such an auxiliary control circuit includes a sensing element in series with the decoding transistors and the load transistor for producing a sensing signal switching between a first value when only one memory line is actually selected and a second value when multiple memory word lines appear to be simultaneously selected. Also, an inverter receives the sensing signal and outputs a first signal. A high pass filter receives the first signal and produces a control transient voltage for transitorily bringing the load transistor to a state of full conduction when the sensing signal switches from the first value to the second value.
Abstract:
A method is provided for manufacturing electronic non-volatile memory devices on a semiconductor substrate including a matrix of memory cells having floating gate regions formed on respective active areas and an oxide layer separating the active areas. The method may include forming sidewalls of the floating gate regions that are slanted with respect to a surface of the semiconductor substrate, forming a trench in the oxide layer following the formation of the floating gate regions, and forming a plug of polycrystalline silicon in the trench. The slanted sidewalls of the floating gate regions provide a lead-in for the formation of upper layers.