Abstract:
Some embodiments include a capacitive chip having a plurality of capacitive units. The individual capacitive units include alternating electrode layers and dielectric layers in a capacitor stack. The capacitor stack extends across an undulating topography. The undulating topography has peaks and valleys with the peaks being elevationally offset relative to the valleys by a distance within a range of from about 30 microns to about 100 microns. The capacitor stack includes at least about 10 total layers. Some embodiments include apparatuses and multi-chip modules having capacitor chips.
Abstract:
An electrical component provides a ceramic element located on or in a dielectric substrate between and in contact with a pair of electrical conductors, wherein the ceramic element includes one or more metal oxides having fluctuations in metal-oxide compositional uniformity less than or equal to 1.5 mol % throughout the ceramic element. A method of fabricating an electrical component, provides or forming a ceramic element between and in contact with a pair of electrical conductors on a substrate including depositing a mixture of metalorganic precursors and causing simultaneous decomposition of the metal oxide precursors to form the ceramic element including one or more metal oxides.
Abstract:
A circuit board structure with capacitors embedded therein and a method for fabricating the same are disclosed. The structure comprises at least two core layers individually comprising a dielectric layer having two opposite surfaces, circuit layers disposed on the outsides of the two opposite surfaces of the dielectric layer, and at least two capacitors embedded respectively on the insides of the two opposite surfaces of the dielectric layer and individually electrically connecting with the circuit layer at the same side; at least one adhesive layer disposed between the core layers to combine the core layers as a core structure; and at least one conductive through hole penetrating the core layers and the adhesive layer, and electrically connecting the circuit layers of the core layers. Accordingly, the present invention can improve the flexibility of circuit layout, and realize parallel connection between the capacitors to provide more capacitance.
Abstract:
A method for forming an embedded passive device module comprises depositing a first amount of an alkali silicate material, co-depositing an amount of embedded passive device material with the amount of alkali silicate material; and thermally processing the amount of alkali silicate material and the amount of embedded passive device material at a temperature sufficient to cure the amount of alkali silicate material and the amount of embedded passive device material and form a substantially moisture free substrate.
Abstract:
A process for forming a laminate with capacitance and the laminate formed thereby. The process includes the steps of providing a substrate and laminating a conductive foil on the substrate wherein the foil has a dielectric. A conductive layer is formed on the dielectric. The conductive foil is treated to electrically isolate a region of conductive foil containing the conductive layer from additional conductive foil. A cathodic conductive couple is made between the conductive layer and a cathode trace and an anodic conductive couple is made between the conductive foil and an anode trace.
Abstract:
Provided are semiconductor packages comprising at least one thin-film capacitor attached to a printed wiring board core through build-up layers, wherein a first electrode of the thin-film capacitor comprises a thin nickel foil, a second electrode of the thin-film capacitor comprises a copper electrode, and a copper layer is formed on the nickel foil. The interconnections between the thin-film capacitor and the semiconductor device provide a low inductance path to transfer charge to and from the semiconductor device. Also provided are methods for fabricating such semiconductor packages.
Abstract:
This invention relates to compositions, and the use of such compositions for protective coatings, particularly of electronic devices. The invention concerns fired-on-foil ceramic capacitors coated with a composite encapsulant and embedded in a printed wiring board.
Abstract:
A circuit board structure with capacitors embedded therein and a method for fabricating the same are disclosed. The structure comprises at least two core layers individually comprising a dielectric layer having two opposite surfaces, circuit layers disposed on the outsides of the two opposite surfaces of the dielectric layer, and at least two capacitors embedded respectively on the insides of the two opposite surfaces of the dielectric layer and individually electrically connecting with the circuit layer at the same side; at least one adhesive layer disposed between the core layers to combine the core layers as a core structure; and at least one conductive through hole penetrating the core layers and the adhesive layer, and electrically connecting the circuit layers of the core layers. Accordingly, the present invention can improve the flexibility of circuit layout, and realize parallel connection between the capacitors to provide more capacitance.
Abstract:
This invention relates to compositions, and the use of such compositions for protective coatings, particularly of electronic devices. The invention concerns a fired-on-foil ceramic capacitors coated with a composite encapsulant and embedded in a printed wiring board.
Abstract:
A multilayer printed wiring board including a layered capacitor section provided on a first interlayer resin insulation layer and a high dielectric layer and first and second layered electrodes that sandwich the high dielectric layer. A second interlayer resin insulation layer is provided on the first insulation layer and the capacitor section, and a metal thin-film layer is provided over the capacitor section and on the second insulation layer. An outermost interlayer resin insulation layer is provided on the second insulation layer and the metal thin-film layer. A mounting section is provided on the outermost insulation layer and has first and second external terminals to mount a semiconductor element. Multiple via conductors penetrate each insulation layer. The via conductors include first via conductors that electrically connect the first layered electrode to the first external terminals. Second via conductors electrically connect the second layered electrode to the second external terminals.