Abstract:
One illustrative method disclosed herein includes, among other things, forming a shared gate cavity that spans across an isolation region and is positioned above first and second active regions, forming at least one layer of material in the shared gate cavity above the first and second active regions and above the isolation region, forming a first masking layer that covers portions of the shared gate cavity positioned above the first and second active regions while exposing a portion of the shared gate cavity positioned above the isolation region, with the first masking layer in position, performing at least one first etching process to remove at least a portion of the at least one layer of material in the exposed portion of the shared gate cavity above the isolation region, and removing the first masking layer.
Abstract:
Methods of fabricating fin structures having exposed upper fin portions with a uniform exposure height are disclosed herein. The fabrication methods include providing a substrate with plurality of fins and a dielectric material disposed between and over the plurality of fins, planarizing the dielectric material and the plurality of fins, and uniformly recessing the dielectric material to a pre-selected depth below upper surfaces of the plurality of fins to expose upper fin portions. The exposed upper fin portions, as a result of uniformly recessing the dielectric material, have a uniform exposure height above the recessed dielectric material. A protective film may be provided over the recessed dielectric material and exposed upper fin portions to preserve the uniform exposure height of the upper fin portions. The uniform exposure height of the exposed upper fin portions facilitates subsequent formation of one or more circuit structures above the substrate.
Abstract:
One method disclosed includes forming a replacement gate structure for a device. The method includes forming a gate cavity above a semiconductor substrate. The method further includes forming a first bulk metal layer in the gate cavity above a work function metal layer. The method further includes forming a conductive etch stop layer in the gate cavity above the first bulk metal layer. The method further includes forming a second bulk metal layer in the gate cavity above the conductive etch stop layer. The method further includes performing at least one etching process to recess the first and second bulk metal layers selectively relative to the conductive etch stop layer. The method further includes performing at least one etching process to recess at least the conductive etch stop layer.
Abstract:
One method disclosed includes, among other things, forming a gate structure above an active region of a semiconductor substrate, wherein a first portion of the gate structure is positioned above the active region and second portions of the gate structure are positioned above an isolation region formed in the substrate, forming a sidewall spacer adjacent opposite sides of the first portion of the gate structure so as to define first and second continuous epi formation trenches comprised of the spacer that extend for less than the axial length of the gate structure, and forming an epi semiconductor material on the active region within each of the first and second continuous epi formation trenches.
Abstract:
Aspects of the present invention relate to approaches for forming a narrow source-drain contact in a semiconductor device. A contact trench can be etched to a source-drain region of the semiconductor device. A titanium liner can be deposited in this contact trench such that it covers substantially an entirety of the bottom and walls of the contact trench. An x-metal layer can be deposited over the titanium liner on the bottom of the contact trench. A titanium nitride liner can then be formed on the walls of the contact trench. The x-metal layer prevents the nitriding of the titanium liner on the bottom of the contact trench during the formation of the nitride liner.
Abstract:
A semiconductor structure includes a semiconductor substrate, a semiconductor fin on the semiconductor substrate, a transistor integrated with the semiconductor fin at a top portion thereof, the transistor including an active region including a source, a drain and a channel region therebetween. The semiconductor structure further includes a gate structure over the channel region, the gate structure including a gate electrode, an air-gap spacer pair on opposite sidewalls of the gate electrode, and a gate contact for the gate electrode. A method of fabricating such a semiconductor device is also provided.
Abstract:
Structures for air-gap spacers in a field-effect transistor and methods for forming air-gap spacers in a field-effect transistor. A gate structure is formed on a top surface of a semiconductor body. A dielectric spacer is formed adjacent to a vertical sidewall of the gate structure. A semiconductor layer is formed on the top surface of the semiconductor body. The semiconductor layer is arranged relative to the vertical sidewall of the gate structure such that a first section of the first dielectric spacer is located in a space between the semiconductor layer and the vertical sidewall of the gate structure. A second section of the dielectric spacer that is located above a top surface of the semiconductor layer is removed. An air-gap spacer is formed in a space from which the second section of the dielectric spacer is removed.
Abstract:
At least one method, apparatus and system are disclosed for forming a fin field effect transistor (finFET) having an oxide level in a fin array region within a predetermined height of the oxide level of a field region. A first oxide process is performed for controlling a first oxide recess level in a field region adjacent to a fin array region comprising a plurality of fins in a finFET device. The first oxide process comprises depositing an oxide layer over the field region and the fin array region and performing an oxide recess process to bring the oxide layer to the first oxide recess level in the field region. A second oxide process is performed for controlling a second oxide recess level in the fin array region. The second oxide process comprises isolating the fin array region, depositing oxide material, and performing an oxide recess process to bring the oxide level in the fin array region to the second oxide recess level. The first oxide recess level is within a predetermined height differential of the second oxide recess level.
Abstract:
Embodiments of the present invention provide a replacement metal gate and a fabrication process with reduced lithography steps. Using selective etching techniques, a layer of fill metal is used to protect the dielectric layer in the trenches, eliminating the need for some lithography steps. This, in turn, reduces the overall cost and complexity of fabrication. Furthermore, additional protection is provided during etching, which serves to improve product yield.
Abstract:
This disclosure relates to a method of replacement metal gate patterning for nanosheet devices including: forming a first and a second nanosheet stack on a substrate, the first and the second nanosheet stacks being adjacent to each other and each including vertically adjacent nanosheets separated by a distance; depositing a first metal surrounding the first nanosheet stack and a second portion of the first metal surrounding the second nanosheet stack; forming an isolation region between the first nanosheet stack and the second nanosheet stack; removing the second portion of the first metal surrounding the second nanosheet stack with an etching process, the isolation region preventing the etching process from reaching the first portion of the first metal and thereby preventing removal of the first portion of the first metal; and depositing a second metal surrounding each of the nanosheets of the second nanosheet stack.