Abstract:
In various embodiments, a package arrangement may be provided. The package arrangement may include at least one chip. The package arrangement may further include encapsulation material at least partially encapsulating the chip. The package arrangement may also include a redistribution structure over a first side of the chip. The package arrangement may further include a metal structure over a second side of the chip. The second side may be opposite the first side. The package arrangement may additionally include at least one of a semiconductor structure and an electrically conductive plastic material structure electrically coupled to the redistribution structure and the metal structure to form a current path between the redistribution structure and the metal structure.
Abstract:
The capacitance or inductance of electrical circuits is adjusted by measuring inductance or capacitance values of passive components fabricated on a first substrate, storing individual associations between the passive components and the respective measured values of the passive components, and determining electrical connections for the passive components based on the stored individual associations between the passive components and the respective measured values of the passive components. A corresponding system includes a tester operable to measure inductance or capacitance values of the passive components fabricated on the first substrate, a storage system operable to store the individual associations between the passive components and the respective measured values of the passive components, and a processing circuit operable to determine the electrical connections for the passive components based on the stored individual associations between the passive components and the respective measured values of the passive components.
Abstract:
A method of producing and testing a chip package is described. The chip package to be produced includes a semiconductor chip containing an integrated circuit and a reinforcing structure attached to the semiconductor chip. Further, the chip package has a lower main face and an upper main face opposite to the lower main face, wherein the lower main face is at least partly formed by an exposed surface of the semiconductor chip and the upper main face is formed by a terminal surface of the reinforcing structure on which external terminal pads of the chip package are arranged. After production, the package is subjected to a package-level burn-in test.
Abstract:
One or more embodiments relate to a semiconductor structure, comprising: a barrier layer overlying a workpiece surface; a seed layer overlying the barrier layer; an inhibitor layer overlying said seed layer, the inhibitor layer having a opening exposing a portion of the seed layer, and a fill layer overlying the exposed portion of the seed layer.
Abstract:
In accordance with an embodiment, a transformer includes a first coil disposed in a first conductive layer on a first side of a first dielectric layer, and a second coil disposed in a second conductive layer on a second side of the first dielectric layer. Each coil has a first end disposed inside its respective coil and a second end disposed at an outer perimeter of its respective coil. A first crossover disposed in the second conductive layer is directly connected to the first end of the first coil and extends past the outer perimeter of the first coil. In addition, a second crossover disposed in the first conductive layer is directly connected to the first end of the second coil and extends past the outer perimeter of the second coil.
Abstract:
A package which comprises a chip carrier made of a first material, a body made of a second material differing from the first material and being arranged on the chip carrier so as to form a cavity, a semiconductor chip arranged at least partially in the cavity, and a laminate encapsulating at least one of at least part of the chip carrier, at least part of the body and at least part of the semiconductor chip.
Abstract:
The electronic device for sensing a current comprises a semiconductor chip comprising a main face, an electronic circuit integrated in the semiconductor chip, a redistribution metallization layer disposed above the main face of the semiconductor chip, a current path formed in the redistribution metallization layer, the current path forming a resistor that is connected at two resistance defining end points to the electronic circuit for sensing a current flowing through the current path, and external contact elements connected with the redistribution metallization layer for feeding a current to be sensed into the current path.
Abstract:
Method for producing chip assemblies that include semiconductor chip arrangements, each semiconductor chip arrangement including a semiconductor chip having a semiconductor body with a top side and an underside, a top main electrode arranged on the top side, a bottom main electrode arranged on the underside, an electrically conductive top compensation lamina arranged on a side of the top main electrode facing away from the semiconductor body and cohesively and electrically conductively connected to the top main electrode, an electrically conductive bottom compensation lamina arranged on a side of the bottom main electrode facing away from the semiconductor body and cohesively and electrically conductively connected to the bottom main electrode, and a dielectric embedding compound enclosing the semiconductor chip laterally such that the side of the compensation laminae facing away from the semiconductor body are at least not completely covered by the embedding compound.
Abstract:
A semiconductor arrangement includes top and bottom contact plates, a plurality of chip assemblies, a dielectric embedding compound, and a control electrode interconnection structure. Each chip assembly has a semiconductor chip having a semiconductor body. The semiconductor body has a top side and an opposing underside. The top side is spaced apart from the underside in a vertical direction. Each semiconductor chip has a top main electrode arranged on the top side, a bottom main electrode arranged on the underside, a control electrode arranged at the top side, and an electrically conductive top compensation die, arranged on the side of the top main electrode facing away from the semiconductor body and cohesively and electrically conductively connected to the top main electrode by means of a top connecting layer. An electric current between the top main electrode and the bottom main electrode can be controlled by means of the control electrode.
Abstract:
Method for producing chip assemblies that include semiconductor chip arrangements, each semiconductor chip arrangement including a semiconductor chip having a semiconductor body with a top side and an underside, a top main electrode arranged on the top side, a bottom main electrode arranged on the underside, an electrically conductive top compensation lamina arranged on a side of the top main electrode facing away from the semiconductor body and cohesively and electrically conductively connected to the top main electrode, an electrically conductive bottom compensation lamina arranged on a side of the bottom main electrode facing away from the semiconductor body and cohesively and electrically conductively connected to the bottom main electrode, and a dielectric embedding compound enclosing the semiconductor chip laterally such that the side of the compensation laminae facing away from the semiconductor body are at least not completely covered by the embedding compound.