Abstract:
A technology for a user equipment (UE) that is operable to connect to a third generation partnership project (3GPP) long term evolution (LTE) cell in a cellular network. Logged minimization of drive test (MDT) measurements can be recorded at the UE at a selected rate when the UE is in a radio resource control (RRC) idle mode in a first LTE cell in a cellular network. A change in a UE state of the RRC idle mode can be identified. The Logged MDT measurements can stop being recorded at the UE when the UE state changes from a camped normally UE state to another UE state of the RRC idle mode. The Logged MDT measurements can resume being recorded when the UE state changes to the camped normally UE state of the RRC idle mode.
Abstract:
Techniques for enabling dual-connectivity in LTE systems for terminals with only single uplink component carrier capability are described. Dual connectivity refers to a terminal having serving cells from two base stations. In one technique, the terminal transmits to macro and small cells using time division multiplexing. In another, the terminal transmits to one cell only, either the macro cell or the small cell.
Abstract:
Apparatuses and methods for control of small data transmission by a user equipment (UE) are described herein. The UE may determine that data to be transmitted by the UE is small data if a size of the data is below a threshold. The UE may transmit a message indicating that the UE shall be transmitting small data responsive to determining that data to be transmitted by the UE is small data. The UE may receive a radio resource control (RRC) signal from an evolved Node B (eNodeB) that includes a logical channel identifier (LCID) of a small data radio bearer (SDRB) configured for transmission of small data. The UE may transmit small data on the SDRB subsequent to receiving the RRC signal from the eNodeB. The UE may refrain from transmitting other than small data on the SDRB. Other apparatuses and methods are described.
Abstract:
Embodiments of a User Equipment (UE) arranged for transmitting packets in a cellular network are disclosed herein. The UE can generate a first packet having a first packet classification information and a second packet having a second packet classification information. The first packet classification information can be associated with a different quality of service (QoS) requirement than the second packet classification information. The UE, using a packet filter, can determine, based on the first packet classification information, a first traffic flow from a plurality of traffic flows in a traffic flow template (TFT) for transmitting the first packet. Additionally, the UE can determine, based on the second packet classification information, a second traffic flow from the plurality of traffic flows for transmitting the second packet. Subsequently, the UE send the first packet to the first traffic flow and the second packet to the second traffic flow.
Abstract:
Technology for supporting dual connectivity is disclosed. A user equipment (UE) may receive a radio resource control (RRC) reconfiguration message from a macro evolved node B (MeNB). The RRC reconfiguration message may indicate that a secondary cell associated with a secondary eNB (SeNB) is to be added for connection to the UE. The UE may complete an RRC reconfiguration procedure to add the secondary cell. The UE may send a preamble to the SeNB indicating that the UE has completed the RRC reconfiguration procedure. The UE may communicate data with the SeNB after sending the preamble to the SeNB, wherein the UE supports dual connectivity to the MeNB and the SeNB.
Abstract:
An evolved NodeB (eNB), user equipment (UE) and mobility management entity (MME), as well as method of communicating using a power saving mode (PSM) are generally described. A PSM configuration indication of the UE may be received at the eNB from the UE or MME in an Initial UE Context Setup Request, a UE Context Modify Request, core network assistance information, or a dedicated message to the eNB. The eNB may adjust the time for transmitting to the UE an RRC connection release message based on the PSM configuration indication. The eNB may determine whether the UE is in a connection mode and the inactivity timer of the eNB having reached the activation timer of the PSM configuration indication, transmit the RRC connection release message to the MME. The PSM configuration may be provided between eNBs during handover.
Abstract:
Embodiments of a User Equipment (UE) arranged for transmitting packets in a cellular network are disclosed herein. The UE can generate a first packet having a first packet classification information and a second packet having a second packet classification information. The first packet classification information can be associated with a different quality of service (QoS) requirement than the second packet classification information. The UE, using a packet filter, can determine, based on the first packet classification information, a first traffic flow from a plurality of traffic flows in a traffic flow template (TFT) for transmitting the first packet. Additionally, the UE can determine, based on the second packet classification information, a second traffic flow from the plurality of traffic flows for transmitting the second packet. Subsequently, the UE send the first packet to the first traffic flow and the second packet to the second traffic flow.
Abstract:
User Equipment (UE), computer readable medium, and method to determine a mobility of the UE are disclosed. The UE may include circuitry configured to determine a plurality of signals from a serving cell. The each signal of the plurality of signals may be one or more of: a reference signal receive power (RSRP), a reference signal receive quality (RSRQ), a received signal strength indicator (RSSI), a signal-to-noise ratio (SNR), a signal-to-interference-ratio (SIR), a signal-to-interference-plus-noise ratio (SINR), and a CQI. The circuitry may be configured to determine a measure for each of a window size of the plurality of signals. Each measure may be a variance of the plurality of signals, a standard deviation of the plurality of signals, a percent confidence interval (CI) of a mean of the measure, and a linear combination of measures. The circuitry may determine whether the UE is stationary based on one or more measures.
Abstract:
Embodiments of wireless communication devices and method for discontinuous reception (DRX) mode in RRC_IDLE state of wireless communication are generally described herein. Some of these embodiments describe a wireless communication device having processing circuitry arranged to determine to use an extended paging discontinuous reception (DRX) value to increase a paging cycle length. The wireless communication device may transmit a non-access stratum (NAS) message to the network, indicating that the wireless communication device desires to use the extended paging DRX value. The wireless communication device may receive a message from the network that includes an information element (IE) indicating whether the network supports the extended paging DRX value. Other methods and apparatuses are also described.
Abstract:
Systems and methods of providing V2X communications are generally described. The multimode UE communicates V2X messages with an eNB. The eNB detects whether the UE is able to receive messages from a nearby DSRC RSU based on measurements received from the UE and reported to the eNB. Based on the measurements, the eNB offloads V2X traffic to the DSRC RSU and triggers the UE to start communicating the V2X services from the DSRC RSU rather than the eNB. The measurements are reported in a BSR or DSRC MAC control element or RRC measurement report. The measurement report includes DSRC presence fields, CCH measurements and SCH measurements for each DSRC RSU that the UE is able to detect.