Abstract:
According to various embodiments, a method for manufacturing a semiconductor device may include providing a semiconductor workpiece including a device region at a first side of the semiconductor workpiece, wherein a mechanical stability of the semiconductor workpiece is insufficient to resist at least one back end process without damage, and depositing at least one conductive layer over a second side of the semiconductor workpiece opposite the first side of the semiconductor workpiece, wherein the at least one conductive layer increases the mechanical stability of the semiconductor workpiece to be sufficient to resist the at least one back end process without damage.
Abstract:
Described herein is a protective structure. The protective structure includes a semiconductor substrate, a first diode disposed at least one of in or on the semiconductor substrate and a diode arrangement disposed at least one of in or on the semiconductor substrate. The diode arrangement includes a stack of a second diode and a transient voltage suppressor (TVS) diode connected in series with the second diode. The diode arrangement is in parallel with the first diode.
Abstract:
According to various embodiments, a method for manufacturing a semiconductor device may include providing a semiconductor workpiece including a device region at a first side of the semiconductor workpiece, wherein a mechanical stability of the semiconductor workpiece is insufficient to resist at least one back end process without damage, and depositing at least one conductive layer over a second side of the semiconductor workpiece opposite the first side of the semiconductor workpiece, wherein the at least one conductive layer increases the mechanical stability of the semiconductor workpiece to be sufficient to resist the at least one back end process without damage.
Abstract:
A method of forming a semiconductor device includes forming a first vertical protection device comprising a thyristor in a substrate, forming a first lateral trigger element for triggering the first vertical protection device in the substrate, and forming an electrical path in the substrate to electrically couple the first lateral trigger element with the first vertical protection device.
Abstract:
In a method for manufacturing an electrostatic discharge protection circuit, an electrostatic discharge device structure is formed during a front side processing of a semiconductor substrate in a first area. Contact pads are formed on the front side on the electrostatic discharge device structure and in a second area. During back side processing of the semiconductor substrate, a metal connection between the first electrostatic discharge device structure and the second area is formed.
Abstract:
An ESD protection device may include: a first vertically integrated ESD protection structure comprising a first semiconductor portion, a first contact region disposed on a first side of the first semiconductor portion and a first terminal exposed on a second side of the first semiconductor portion opposite the first side of the first semiconductor portion, a second vertically integrated ESD protection structure comprising a second semiconductor portion, a second contact region disposed on a first side of the second semiconductor portion and a second terminal exposed on a second side of the second semiconductor portion opposite the first side of the second semiconductor portion, an electrical connection layer, wherein the first vertically integrated ESD protection structure and the second vertically integrated ESD protection structure are disposed on the electrical connection layer laterally separated from each other and are electrically connected with each other anti-serially via the electrical connection layer.
Abstract:
According an embodiment, an electrostatic discharge protection structure includes: a semiconductor layer doped with a dopant of a first doping type, a first well region extending from a surface of the semiconductor layer into the semiconductor layer, wherein the first well region is doped with a dopant of a second doping type opposite the first doping type; a second well region next to the first well region and extending from the surface of the semiconductor layer into the semiconductor layer, wherein the second well region is doped with a dopant of the first doping type; an isolation structure extending from the surface of the semiconductor layer into the semiconductor layer with a depth similar to the depth of at least one of the first well region or the second well region, wherein the isolation structure is arranged laterally adjacent to the first well region and the second well region.
Abstract:
An arrangement is provided. The arrangement may include: a substrate having a front side and a back side, a die region within the substrate, a multi-purpose layer defining a back side of the die region, and an etch stop layer disposed over the multi-purpose layer between the multi-purpose layer and the back side of the substrate. The multi-purpose layer may be formed of an ohmic material, and the etch stop layer may be of a first conductivity type of a first doping concentration.
Abstract:
A vertically integrated semiconductor device in accordance with various embodiments may include: a first semiconducting layer; a second semiconducting layer disposed over the first semiconducting layer; a third semiconducting layer disposed over the second semiconducting layer; and an electrical bypass coupled between the first semiconducting layer and the second semiconducting layer.
Abstract:
An arrangement is provided. The arrangement may include: a die including at least one electronic component and a first terminal on a first side of the die and a second terminal on a second side of the die opposite the first side, wherein the first side being the main processing side of the die, and the die further including at least a third terminal on the second side; a first electrically conductive structure providing current flow from the third terminal on second side of the die to the first side through the die; a second electrically conductive structure on the first side of the die laterally coupling the second terminal with the first electrically conductive structure; and an encapsulation material disposed at least over the first side of the die covering the first terminal and the second electrically conductive structure.