Abstract:
Methods and apparatus are provided for direct synthesis of RF signals using maximum likelihood sequence estimation. An RF digital RF input signal is synthesized by performing maximum likelihood sequence estimation on the digital RF input signal to produce a digital stream, such that after filtering by a prototype filter the produced digital stream produces a substantially minimum error. The substantially minimum error comprises a difference between a digital output of the prototype filter and the digital RF input signal. The digital stream is substantially equal to the input digital RF signal. The digital stream can be applied to an analog restitution filter, and the output of the analog restitution filter comprises an analog RF signal that approximates the digital RF input signal.
Abstract:
A digital processor is provided having an instruction set with a complex exponential function. The digital processor evaluates a complex exponential function for an input value, x, by obtaining a complex exponential software instruction having the input value, x, as an input; and in response to the complex exponential software instruction: invoking at least one complex exponential functional unit that implements complex exponential software instructions to apply the complex exponential function to the input value, x; and generating an output corresponding to the complex exponential of the input value, x. A complex exponential function for an input value, x, can be evaluated by wrapping the input value to maintain a given range; computing a coarse approximation angle using a look-up table; scaling the coarse approximation angle to obtain an angle from 0 to θ; and computing a fine corrective value using a polynomial approximation.
Abstract:
A signal processing circuit arrangement may include a preamplifier circuit configured to map a first dimension input and a second dimension input to a first subset of a plurality of lookup table coefficients of a two-dimensional (2D) lookup table, wherein the first dimension input and the second dimension input each represent a signal level of one or more input signals, extrapolate from the first subset of the plurality of lookup table coefficients to generate a lookup table output, and apply the lookup table output to the one or more input signals to generate a predistorted input signal for an amplifier.
Abstract:
Methods and apparatus are provided for direct synthesis of RF signals using maximum likelihood sequence estimation. An RF digital RF input signal is synthesized by performing maximum likelihood sequence estimation on the digital RF input signal to produce a digital stream, such that after filtering by a prototype filter the produced digital stream produces a substantially minimum error. The substantially minimum error comprises a difference between a digital output of the prototype filter and the digital RF input signal. The digital stream is substantially equal to the input digital RF signal. The digital stream can be applied to an analog restitution filter, and the output of the analog restitution filter comprises an analog RF signal that approximates the digital RF input signal.
Abstract:
Maximum likelihood bit-stream generation and detection techniques are provided using the M-algorithm and Infinite Impulse Response (IIR) filtering. The M-Algorithm is applied to a target input signal X to perform Maximum Likelihood Sequence Estimation on the target input signal X to produce a digital bit stream B, such that after filtering by an IIR filter, the produced digital stream Y produces an error signal satisfying one or more predefined requirements. The predefined requirements comprise, for example, a substantially minimum error. In an exemplary bit detection implementation, the target input signal X comprises an observed analog signal and the produced digital stream Y comprises a digitized output of a receive channel corresponding to a transmitted bit stream. In an exemplary bit stream generation implementation, the target input signal X comprises a desired transmit signal and the produced digital stream Y comprises an estimate of the desired transmit signal.
Abstract:
A system and method for equalization of a linear or non-linear system. The system includes an adder configured to add an analog reference signal and an input signal, a processing system configured to process a sum of the analog reference signal and the input signal, a non-linear equalizer (NLEQ) configured to process an output of the processing system to remove a distortion incurred by the processing system, a calibration circuitry configured to generate a reconstructed reference signal in digital domain based on measurement of the analog reference signal, and generate coefficients for the NLEQ based on the reconstructed reference signal and the output of the processing system, and a subtractor configured to subtract the reconstructed reference signal from an output of the NLEQ. The analog reference signal may be a sinusoid including single or multiple tones of sinusoids. The non-linear system may be an analog-to-digital converter (ADC).
Abstract:
Techniques are disclosed for reducing or eliminating loop overhead caused by function calls in processors that form part of a pipeline architecture. The processors in the pipeline process data blocks in an iterative fashion, with each processor in the pipeline completing one of several iterations associated with a processing loop for a commonly-executed function. The described techniques leverage the use of message passing for pipelined processors to enable an upstream processor to signal to a downstream processor when processing has been completed, and thus a data block is ready for further processing in accordance with the next loop processing iteration. The described techniques facilitate a zero loop overhead architecture, enable continuous data block processing, and allow the processing pipeline to function indefinitely within the main body of the processing loop associated with the commonly-executed function where efficiency is greatest.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
Techniques are disclosed for reducing or eliminating loop overhead caused by function calls in processors that form part of a pipeline architecture. The processors in the pipeline process data blocks in an iterative fashion, with each processor in the pipeline completing one of several iterations associated with a processing loop for a commonly-executed function. The described techniques leverage the use of message passing for pipelined processors to enable an upstream processor to signal to a downstream processor when processing has been completed, and thus a data block is ready for further processing in accordance with the next loop processing iteration. The described techniques facilitate a zero loop overhead architecture, enable continuous data block processing, and allow the processing pipeline to function indefinitely within the main body of the processing loop associated with the commonly-executed function where efficiency is greatest.
Abstract:
A semiconductor chip providing on-chip self-testing of an Analog-to-Digital Converter, ADC, implemented in the semiconductor chip is provided. The semiconductor chip comprises the ADC and a Digital-to-Analog Converter, DAC, configured to generate and supply a radio frequency test signal to the ADC via a supply path. The ADC is configured to generate digital output data based on the radio frequency test signal. The semiconductor chip further comprises a reference data generation circuit configured to generate digital reference data. Additionally, the semiconductor chip comprises a comparator circuit configured to compare the digital output data to the digital reference in order to determine error data.