Abstract:
An apparatus includes a primary layer of a substrate that includes an open area that extends through the primary layer to an inner layer of the substrate. The apparatus includes a secondary layer of the substrate. The apparatus also includes the inner layer of the substrate that is positioned between the primary layer and the secondary layer. The inner layer includes component bond pads that are disposed on the inner layer and that are exposed via the open area of the primary layer.
Abstract:
Pre-encapsulated lead frames suitable for use in microelectronic device packages are disclosed. Individual lead frames can include a set of multiple lead fingers arranged side by side with neighboring lead fingers spaced apart from each other by a corresponding gap. An encapsulating compound at least partially encapsulates the set of lead fingers without encapsulating a microelectronic device. The encapsulating compound can generally fill the plurality of gaps between two adjacent lead fingers.
Abstract:
Microelectronic devices and methods for manufacturing such devices are disclosed herein. In one embodiment, a packaged microelectronic device can include an interposer substrate with a plurality of interposer contacts. A microelectronic die is attached and electrically coupled to the interposer substrate. The device further includes a casing covering the die and at least a portion of the interposer substrate. A plurality of electrically conductive through-casing interconnects are in contact with and projecting from corresponding interposer contacts at a first side of the interposer substrate. The through-casing interconnects extend through the thickness of the casing to a terminus at the top of the casing. The through-casing interconnects comprise a plurality of filaments attached to and projecting away from the interposer contacts in a direction generally normal to the first side of the interposer substrate.
Abstract:
A semiconductor device package includes a land grid array package. At least one semiconductor die is mounted to an interposer substrate, with bond pads of the semiconductor die connected to terminal pads on the same side of the interposer substrate as the at least one semiconductor die. Terminal pads of the interposer substrate may be electrically connected to either or both of a peripheral array pattern of lands and to a central, two-dimensional array pattern of pads, both array patterns located on the opposing side of the interposer substrate from the at least one semiconductor die. Additional components, active, passive or both, may be connected to pads of the two-dimensional array to provide a system-in-a-package. Lead fingers of a lead frame may be superimposed on the opposing side of the interposer substrate, bonded directly to the land grid array land and wire bonded to pads as desired for repair or to ease routing problems on the interposer. The land grid array package may be mounted to a carrier substrate, and the lands wire bonded to conductive pads on the carrier substrate. Methods of fabrication are also disclosed.
Abstract:
Electronic devices include a substrate with first and second pairs of conductive traces extending in or on the substrate. A first conductive interconnecting member extends through a hole in the substrate and communicates electrically with a first trace of each of the first and second pairs, while a second conductive interconnecting member extends through the hole and communicates electrically with the second trace of each of the first and second pairs. The first and second interconnecting members are separated from one another by a distance substantially equal to a distance separating the conductive traces in each pair. Electronic device assemblies include a transmitting device configured to transmit a differential signal through a conductive structure to a receiving device. The conductive structure includes first and second pair of conductive traces with first and second interconnecting members providing electrical communication therebetween.
Abstract:
A device is disclosed which includes an interposer, at least one capacitor formed at least partially within an opening formed in the interposer and an integrated circuit that is operatively coupled to the interposer. A method is disclosed which includes obtaining an interposer having at least one capacitor formed at least partially within an opening in the interposer and operatively coupling an integrated circuit to the interposer. A method is also disclosed which includes obtaining an interposer comprising a dielectric material, forming an opening in the interposer and forming a capacitor that is positioned at least partially within the opening.
Abstract:
Various embodiments of semiconductor assemblies with multi-level substrates and associated methods of manufacturing are described below. In one embodiment, a substrate for carrying a semiconductor die includes a first routing level, a second routing level, and a conductive via between the first and second routing levels. The conductive via has a first end proximate the first routing level and a second end proximate the second routing level. The first routing level includes a terminal and a first trace between the terminal and the first end of the conductive via. The second routing level includes a second trace between the second end of the conductive via and a ball site. The terminal of the first routing level and the ball site of the second routing level are both accessible for electrical connections from the same side of the substrate.
Abstract:
Packaged microelectronic devices recessed in support member cavities, and associated methods, are disclosed. Method in accordance with one embodiment includes positioning a microelectronic device in a cavity of a support member, with the cavity having a closed end with a conductive layer, and an opening through which the cavity is assessable. The microelectronic device can have bond sites, a first surface, and a second surface facing opposite from the first surface. The microelectronic device can be positioned in the cavity so that the second surface faces toward and is carried by the conductive layer. The method can further include electrically coupling the bond sites of the microelectronic device to the conductive layer. In particular embodiments, the microelectronic device can be encapsulated in the cavity without the need for a releasable tape layer to temporarily support the microelectronic device.
Abstract:
Electronic devices include a substrate with first and second pairs of conductive traces extending in or on the substrate. A first conductive interconnecting member extends through a hole in the substrate and communicates electrically with a first trace of each of the first and second pairs, while a second conductive interconnecting member extends through the hole and communicates electrically with the second trace of each of the first and second pairs. The first and second interconnecting members are separated from one another by a distance substantially equal to a distance separating the conductive traces in each pair. Electronic device assemblies include a transmitting device configured to transmit a differential signal through a conductive structure to a receiving device. The conductive structure includes first and second pair of conductive traces with first and second interconnecting members providing electrical communication therebetween.
Abstract:
A semiconductor device assembly is provided. The assembly includes a substrate and a semiconductor device. The substrate includes a first conductive layer, the first conductive layer having a first trace with a first exposed pad and a second trace with a second exposed pad. A wire bond runs above the first conductive layer to connect the first exposed pad to the second exposed pad, such that the first trace and the second trace are only connected via the wire bond. The semiconductor device includes an electrical connection to the first trace.