Abstract:
Microelectronic devices and methods for manufacturing such devices are disclosed herein. In one embodiment, a packaged microelectronic device can include an interposer substrate with a plurality of interposer contacts. A microelectronic die is attached and electrically coupled to the interposer substrate. The device further includes a casing covering the die and at least a portion of the interposer substrate. A plurality of electrically conductive through-casing interconnects are in contact with and projecting from corresponding interposer contacts at a first side of the interposer substrate. The through-casing interconnects extend through the thickness of the casing to a terminus at the top of the casing. The through-casing interconnects comprise a plurality of filaments attached to and projecting away from the interposer contacts in a direction generally normal to the first side of the interposer substrate.
Abstract:
Stacked microelectronic devices and methods of manufacturing stacked microelectronic devices are disclosed herein. In one embodiment, a method of manufacturing a microelectronic device includes forming a plurality of electrically isolated, multi-tiered metal spacers on a front side of a first microelectronic die, and attaching a back-side surface of a second microelectronic die to individual metal spacers. In another embodiment, the method of manufacturing the microelectronic device may further include forming top-tier spacer elements on front-side wire bonds of the first die.
Abstract:
Microelectronic devices, stacked microelectronic devices, and methods for manufacturing microelectronic devices are described herein. In one embodiment, a set of stacked microelectronic devices includes (a) a first microelectronic die having a first side and a second side opposite the first side, (b) a first substrate attached to the first side of the first microelectronic die and electrically coupled to the first microelectronic die, (c) a second substrate attached to the second side of the first microelectronic die, (d) a plurality of electrical couplers attached to the second substrate, (e) a third substrate coupled to the electrical couplers, and (f) a second microelectronic die attached to the third substrate. The electrical couplers are positioned such that at least some of the electrical couplers are inboard the first microelectronic die.
Abstract:
A device is disclosed which includes a first packaged integrated circuit device, a second packaged integrated circuit device positioned above the first packaged integrated circuit device and a plurality of planar conductive members conductively coupling the first and second packaged integrated circuit devices to one another. A method is also disclosed which includes conductively coupling a plurality of extensions on a leadframe to each of a pair of stacked packaged integrated circuit devices and cutting the leadframe to singulate the extensions from one another.
Abstract:
Pre-encapsulated lead frames suitable for use in microelectronic device packages are disclosed. Individual lead frames can include a set of multiple lead fingers arranged side by side with neighboring lead fingers spaced apart from each other by a corresponding gap. An encapsulating compound at least partially encapsulates the set of lead fingers without encapsulating a microelectronic device. The encapsulating compound can generally fill the plurality of gaps between two adjacent lead fingers.
Abstract:
Microelectronic devices, stacked microelectronic devices, and methods for manufacturing microelectronic devices are described herein. In one embodiment, a set of stacked microelectronic devices includes (a) a first microelectronic die having a first side and a second side opposite the first side, (b) a first substrate attached to the first side of the first microelectronic die and electrically coupled to the first microelectronic die, (c) a second substrate attached to the second side of the first microelectronic die, (d) a plurality of electrical couplers attached to the second substrate, (e) a third substrate coupled to the electrical couplers, and (f) a second microelectronic die attached to the third substrate. The electrical couplers are positioned such that at least some of the electrical couplers are inboard the first microelectronic die.
Abstract:
Stacked microelectronic devices and methods of manufacturing stacked microelectronic devices are disclosed herein. In one embodiment, a method of manufacturing a microelectronic device includes forming a plurality of electrically isolated, multi-tiered metal spacers on a front side of a first microelectronic die, and attaching a back-side surface of a second microelectronic die to individual metal spacers. In another embodiment, the method of manufacturing the microelectronic device may further include forming top-tier spacer elements on front-side wire bonds of the first die.
Abstract:
Microelectronic packages with leadframes, including leadframes configured for stacked die packages, and associated systems and methods are disclosed. A system in accordance with one embodiment includes a support member having first package bond sites electrically coupled to leadframe bond sites. A microelectronic die can be carried by the support member and electrically coupled to the first packaged bond sites. A leadframe can be attached to the leadframe bond sites so as to extend adjacent to the microelectronic die, with the die positioned between the leadframe and the support member. The leadframe can include second package bond sites facing away from the first package bond sites. An encapsulant can at least partially surround the leadframe and the microelectronic die, with the first and second package bond sites accessible from outside the encapsulant.
Abstract:
A method for fabricating a chip-scale board-on-chip substrate, or redistribution element, includes forming conductive planes on opposite sides of a substrate. A first of the conductive planes includes two sets of bond fingers, conductive traces that extend from a first set of the bond fingers, and two sets of redistributed bond pads, including a first set to which the conductive traces lead. The second conductive plane includes conductive traces that extend from locations that are opposite from the second set of bond fingers toward locations that are opposite from the locations of the second set of redistributed bond pads. Conductive vias are formed through the second set of bond fingers to the conductive traces of the second conductive plane. In addition, conductive vias are also formed to electrically connect the conductive vias of the second conductive plane to their corresponding redistributed bond pads in the first conductive plane.
Abstract:
Pre-encapsulated lead frames suitable for use in microelectronic device packages are disclosed. Individual lead frames can include a set of multiple lead fingers arranged side by side with neighboring lead fingers spaced apart from each other by a corresponding gap. An encapsulating compound at least partially encapsulates the set of lead fingers without encapsulating a microelectronic device. The encapsulating compound can generally fill the plurality of gaps between two adjacent lead fingers.