Abstract:
A yaw-rate sensor having a substrate and a plurality of movable substructures that are mounted over a surface of the substrate, the movable substructures being coupled to a shared, in particular, central spring element, means being provided for exciting the movable substructures into a coupled oscillation in a plane that extends parallel to the surface of the substrate, the movable substructures having Coriolis elements, means being provided for detecting deflections of the Coriolis elements induced by a Coriolis force, a first Coriolis element being provided for detecting a yaw rate about a first axis, a second Coriolis element being provided for detecting a yaw rate about a second axis, the second axis being oriented perpendicularly to the first axis.
Abstract:
A rotation-rate sensor having at least one quadrature compensation pattern, which includes at least one first electrode and one second electrode. The second electrode has a first electrode surface and a second electrode surface which are situated opposite to each other. The first electrode is situated in an intermediate space, between the first electrode surface and the second electrode surface. The first electrode surface and also the second electrode surface, over their extension, are at a different distance from the first electrode. The first electrode surface and the second electrode surface of the second electrode are at generally the same distance from each other, over their extension.
Abstract:
An rate-of-rotation sensor having a Coriolis element, which is arranged over a surface of a substrate, is described. The Coriolis element is induced to oscillate in parallel to a first axis. In response to a Coriolis force, the Coriolis element is deflected in a second axis, which is perpendicular to the first axis. A proof element is provided to prove the deflection.
Abstract:
A device for determining a rotation rate is described, in which by means of digital evaluation circuits the output signals of a rotation rate sensor are evaluated. By identification of the transfer function from the electronically generated oscillation voltage that excites the oscillating body carrying the acceleration elements, to the output of the acceleration elements, or by identification of the transfer function from the electrically generated test voltage at the input of the acceleration elements to their output, the systematic errors of the rotation rate sensor are determined and taken into account in the digital sensor signal processing, with the aid of which the rotation rate is unequivocally determined.
Abstract:
A piezoresistive micromechanical sensor component includes a substrate, a seismic mass, at least one piezoresistive bar, and a measuring device. The seismic mass is suspended from the substrate such that it can be deflected. The at least one piezoresistive bar is provided between the substrate and the seismic mass and is subject to a change in resistance when the seismic mass is deflected. The at least one piezoresistive bar has a lateral and/or upper and/or lower conductor track which at least partially covers the piezoresistive bar and extends into the region of the substrate. The measuring device is electrically connected to the substrate and to the conductor track and is configured to measure the change in resistance over a circuit path which runs from the substrate through the piezoresistive bar and from the piezoresistive bar through the lateral and/or upper and/or lower conductor track.
Abstract:
A micromechanical angular acceleration sensor for measuring an angular acceleration is disclosed. The sensor includes a substrate, a seismic mass, at least one suspension, which fixes the seismic mass to the substrate in a deflectable manner, and at least one piezoresistive and/or piezoelectric element for measuring the angular acceleration. The piezoresistive and/or piezoelectric element is arranged in a cutout of the seismic mass. A corresponding method and uses of the sensor are also disclosed.
Abstract:
A micromechanical angular acceleration sensor for measuring an angular acceleration is disclosed. The sensor includes a substrate, a seismic mass, at least one suspension, which fixes the seismic mass to the substrate in a deflectable manner, and at least one piezoresistive and/or piezoelectric element for measuring the angular acceleration. The piezoresistive and/or piezoelectric element is arranged in a cutout of the seismic mass. A corresponding method and uses of the sensor are also disclosed.
Abstract:
A method for connecting at least one sensor or actuator to a time-controlled bus system, the sensor or actuator carrying out a signal processing in at least two phases, the signal processing in a first phase taking place at a higher speed than in a second phase, the sensor or actuator being synchronized to a time, which is external to the sensor, of the time-controlled bus system in at least one of the phases.
Abstract:
A yaw rate sensor includes a drive mass element which is situated above a surface of a substrate and is drivable to vibrate by a drive device along a first axis extending along the surface, having a detection mass element, which is deflectable under the influence of a Coriolis force along a second axis perpendicular to the surface, and having a detection device by which the deflection of the detection mass element along the second axis is detectable. Due to the arrangement of the second axis perpendicular to the surface, the yaw rate sensor may be integrated into a chip together with additional yaw rate sensors suitable for detection of rotations about axes of rotation in other directions.
Abstract:
A delta sigma modulator includes an oscillatory system having a natural frequency and an electronics and a control loop which acts upon the electronics from the oscillatory system and again upon the oscillatory system from the electronics. The control loop provides that a gain in the control loop demonstrates a peaking in a frequency range around the natural frequency of the oscillatory system.