Abstract:
An apparatus and method for a wire-bond die-up area array package is described. The package includes an integrated circuit (IC) die, a substrate, and a thermally conducting body. A bottom surface of the IC die is exposed through an opening in a central region of the substrate. The die is mounted to the thermally conducting body. A bottom surface of the thermally conducting body is configured to be connected to a circuit board, such as a PWB, when the package is mounted to the circuit board. The bottom surface of the thermally conducting body may be connected directly to the circuit board, or may be coupled to the circuit board via solder balls or other mechanism. One or more wirebonds are used to electrically connect the die to a top surface of the substrate. A mold compound encapsulates the die, the wirebonds, and at least a portion of the top surface of the substrate, and fills a gap between peripheral edges of the IC die and inner walls of the substrate central window opening. A matrix of solder balls is attached to a bottom surface of the substrate.
Abstract:
Electrically, mechanically, and thermally enhanced ball grid array (BGA) packages are described. A substrate has a surface, wherein the surface has an opening therein. A stiffener has a surface coupled to the surface of the substrate. An area of the surface of the stiffener can be greater than, equal to, or less than an area of the surface of the substrate. A thermal connector is coupled to the surface of the stiffener through the opening. A surface of the thermal connector is capable of attachment to a printed circuit board (PCB) when the BGA package is mounted to the PCB. The thermal connector can have a height such that the thermal connector extends into a cavity formed in a surface of the PCB when the BGA package is mounted to the PCB. Alternatively, the stiffener and thermal connector may be combined into a single piece stiffener, wherein the stiffener has a protruding portion. The protruding portion extends through the opening when the stiffener is coupled to the substrate, and is capable of attachment to the PCB.
Abstract:
An exemplary implementation of the present disclosure includes a testable semiconductor package that includes an active die having interface contacts and dedicated testing contacts. An interposer is situated adjacent a bottom surface of the active die, the interposer providing electrical connections between the interface contacts and a bottom surface of the testable semiconductor package. At least one conductive medium provides electrical connection between at least one of the dedicated testing contacts and a top surface of the testable semiconductor package. The at least one conductive medium can be coupled to a package-top testing connection, which may include a solder ball.
Abstract:
There are disclosed herein various implementations of semiconductor packages having an interposer configured for magnetic signaling. One exemplary implementation includes a die transmit pad in an active die for transmitting a magnetic signal corresponding to a die electrical signal produced by the active die, and an interposer magnetic tunnel junction (MTJ) pad in the interposer for receiving the magnetic signal. A sensing circuit is coupled to the interposer MTJ pad for producing a receive electrical signal corresponding to the magnetic signal. In one implementation, the sensing circuit is configured to sense a resistance of the interposer MTJ pad and to produce the receive electrical signal according to the sensed resistance.
Abstract:
Flip chip packages are described that include two or more thermal interface materials (TIMs). A die is mounted to a substrate by solder bumps. A first TIM is applied to the die, and has a first thermal resistance. A second TIM is applied to the die and/or the substrate, and has a second thermal resistance that is greater than the first thermal resistance. An open end of a heat spreader lid is mounted to the substrate such that the die is positioned in an enclosure formed by the heat spreader lid and substrate. The first TIM and the second TIM are each in contact with an inner surface of the heat spreader lid. A ring-shaped stiffener may surround the die and be connected between the substrate and heat spreader lid by the second TIM.
Abstract:
An interface substrate is disclosed which includes an interposer having through-semiconductor vias. An upper and a lower organic substrate are further built around the interposer. The disclosed interface substrate enables the continued use of low cost and widely deployed organic substrates for semiconductor packages while providing several advantages. The separation of the organic substrate into upper and lower substrates enables the cost effective matching of fabrication equipment. By providing an opening in one of the organic substrates, one or more semiconductor dies may be attached to exposed interconnect pads coupled to through-semiconductor vias of the interposer, enabling the use of flip chips with high-density microbump arrays and the accommodation of dies with varied bump pitches. By providing the opening specifically in the upper organic substrate, a package-on-package structure with optimized height may also be provided.
Abstract:
An exemplary implementation of the present disclosure includes a testable semiconductor package that includes an active die having interface contacts and dedicated testing contacts. An interposer is situated adjacent a bottom surface of the active die, the interposer providing electrical connections between the interface contacts and a bottom surface of the testable semiconductor package. At least one conductive medium provides electrical connection between at least one of the dedicated testing contacts and a top surface of the testable semiconductor package. The at least one conductive medium can be coupled to a package-top testing connection, which may include a solder ball.
Abstract:
There are disclosed herein various implementations of semiconductor packages having an interposer configured for magnetic signaling. One exemplary implementation includes a die transmit pad in an active die for transmitting a magnetic signal corresponding to a die electrical signal produced by the active die, and an interposer magnetic tunnel junction (MTJ) pad in the interposer for receiving the magnetic signal. A sensing circuit is coupled to the interposer MTJ pad for producing a receive electrical signal corresponding to the magnetic signal. In one implementation, the sensing circuit is configured to sense a resistance of the interposer MTJ pad and to produce the receive electrical signal according to the sensed resistance.
Abstract:
There are disclosed herein various implementations of semiconductor packages including an interposer without through-semiconductor vias (TSVs). One exemplary implementation includes a first active die situated over an interposer. The interposer includes an interposer dielectric having intra-interposer routing traces. The first active die communicates electrical signals to a package substrate situated below the interposer utilizing the intra-interposer routing traces and without utilizing TSVs. In one implementation, the semiconductor package includes a second active die situated over the interposer, the second active die communicating electrical signals to the package substrate utilizing the intra-interposer routing traces and without utilizing TSVs. Moreover, in one implementation, the first active die and the second active die communicate chip-to-chip signals through the interposer.
Abstract:
An exemplary implementation of the present disclosure includes a programmable interposer having top and bottom interface electrodes and conductive particles interspersed within the programmable interposer. The conductive particles are capable of forming an aligned configuration between the top and bottom interface electrodes in response to application of an energy field to the programmable interposer so as to electrically connect the top and bottom interface electrodes. The conductive particles can have a conductive outer surface. Also, the conductive particles can be spherical. The conductive particles can be within a bulk material in an interface layer in the programmable interposer, and the bulk material can be cured to secure programmed paths between the top and bottom interface electrodes.