Abstract:
A semiconductor package structure and a method of fabricating the same are provided. The semiconductor package structure includes a package body having opposing first and second surfaces; a plurality of first conductive pads and a plurality of second conductive pads formed on the first surface of the package body; a semiconductor component embedded in the package body and electrically connected to the first conductive pads; and a plurality of conductive elements embedded in the package body, each of the conductive elements having a first end electrically connected to a corresponding one of the second conductive pads and a second end opposing the first end and exposed from the second surface of the package body. Since the semiconductor component is embedded in the package body, the thickness of the semiconductor package structure is reduced.
Abstract:
A method for fabricating a package structure is provided, which includes the steps of: providing a carrier having a plurality of bonding pads; laminating a laminate on the carrier, wherein the laminate has a built-up portion and a release portion smaller in size than the built-up portion, the release portion covering the bonding pads and the built-up portion being laminated on the release portion and the carrier; forming a plurality of conductive posts in the built-up portion; and removing the release portion and the built-up portion on the release portion such that a cavity is formed in the laminate to expose the bonding pads, the conductive posts being positioned around a periphery of the cavity. Therefore, the present invention has simplified processes.
Abstract:
A package substrate and a semiconductor package are provided. The package substrate includes an insulating layer having opposing first and second surfaces; a first wiring layer formed in the insulating layer, exposed from the first surface of the insulating layer, and having a plurality of first conductive pads; a second wiring layer formed in the insulating layer, exposed from the second surface, and having a plurality of second conductive pads; a third wiring layer formed on the first surface and electrically connected with the first wiring layer; a plurality of first metal bumps formed on the first conductive pads corresponding; and at least one conductive via vertically embedded in the insulating layer and electrically connected to the second and third wiring layers. Therefore, the surfaces of first conductive pads are reduced, and the non-wetting between the first conductive pads and the solder materials formed on conductive bumps is avoided.
Abstract:
A coreless packaging substrate is provided, which includes: a dielectric layer having opposite first and second surfaces; a first circuit layer embedded in the dielectric layer and exposed from the first surface of the dielectric layer, wherein the first circuit layer has a plurality of first conductive pads; a plurality of protruding elements formed on the first conductive pads, respectively, wherein each of the protruding elements has contact surfaces to be encapsulated by an external conductive element; a second circuit layer formed on the second surface of the dielectric layer; and a plurality of conductive vias formed in the dielectric layer for electrically connecting the first circuit layer and the second circuit layer. The present invention strengthens the bonding between the first conductive pads and the conductive elements due to a large contact area between the protruding elements and the conductive elements.
Abstract:
A method of fabricating a semiconductor package is provided, including providing a carrier provided having a circuit layer and a blocking member, forming on the carrier an encapsulating layer having a first surface and a second surface opposing the first surface and encapsulating the circuit layer and the blocking member, with the first surface coupled with the carrier, and removing the carrier and the blocking member to form in the encapsulating layer via the first surface thereof an opening for an electronic component to be received therein. Before the electronic component is disposed in the opening, the circuit layer and the electronic component can be tested in advance, in order to retire the defectives. Therefore, as a defective electronic component is prevented from being disposed in the opening, no defective semiconductor package will be fabricated.
Abstract:
A method for fabricating a coreless packaging substrate is provided, which includes: forming a dielectric layer on a conductive plate having a plurality of conductive pads; forming a circuit layer on the dielectric layer and forming in the dielectric layer a plurality of conductive vias that electrically connect the circuit layer and the conductive pads; and removing a portion of the conductive plate so as to cause the remaining portion of the conductive plate to form a plurality of conductive elements, thereby dispensing with a core layer and reducing the material and fabrication cost.
Abstract:
A method for fabricating a package structure is provided, which includes the steps of: providing a carrier having a plurality of bonding pads; laminating a laminate on the carrier, wherein the laminate has a built-up portion and a release portion smaller in size than the built-up portion, the release portion covering the bonding pads and the built-up portion being laminated on the release portion and the carrier; forming a plurality of conductive posts in the built-up portion; and removing the release portion and the built-up portion on the release portion such that a cavity is formed in the laminate to expose the bonding pads, the conductive posts being positioned around a periphery of the cavity. Therefore, the present invention has simplified processes.
Abstract:
A method of fabricating a packaging substrate is provided, including: providing a carrier having two carrying portions, each of the carrying portions having a first side and a second side opposite to the first side and the carrying portions are bonded through the second sides thereof; forming a circuit layer on the first side of each of the carrying portions; and separating the two carrying portions from each other to form two packaging substrates. The carrying portions facilitate the thinning of the circuit layers and provide sufficient strength for the packaging substrates to undergo subsequent packaging processes. The carrying portions can be removed after the packaging processes to reduce the thickness of packages and thereby meet the miniaturization requirement.
Abstract:
The present invention provides a package structure with an embedded electronic component and a method of fabricating the package structure. The method includes: forming a first wiring layer on a carrier; removing the carrier and forming the first wiring layer on a bonding carrier; disposing an electronic component on the first wiring layer; forming an encapsulating layer, a second wiring layer and an insulating layer on the first wiring layer; disposing a chip on the electronic component and the second wiring layer; and forming a covering layer that covers the chip. The present invention can effectively reduce the thickness of the package structure and the electronic component without using adhesives.
Abstract:
The present invention provides a package structure with an embedded electronic component and a method of fabricating the package structure. The method includes: forming a first wiring layer on a carrier; removing the carrier and forming the first wiring layer on a bonding carrier; disposing an electronic component on the first wiring layer; forming an encapsulating layer, a second wiring layer and an insulating layer on the first wiring layer; disposing a chip on the electronic component and the second wiring layer; and forming a covering layer that covers the chip. The present invention can effectively reduce the thickness of the package structure and the electronic component without using adhesives.