Abstract:
A multilayer circuit board having air bridge crossover structures and an additive method for producing the same, wherein the circuit includes specially designed metallic fortifying layers to mechanically and/or electrically fortify the circuit.
Abstract:
A method for making a multi-layer electronic circuit board 136 having electroplated apertures 96, 98 which may be selectively and electrically isolated from an electrically grounded member 46 and further having selectively formed air bridges and/or crossover members 128 which are structurally supported by material 134.
Abstract:
An electronic assembly includes a flexible multilayer substrate having integral electrically-conductive traces that also includes, as a lowermost layer, a metal foil. A plurality of uppermost layers, likewise including a metal foil, form a thin barrier member that is sealingly attached to the substrate's other layers. In this manner, a plurality of electronic components, mounted on the substrate's other layers so as to be electrically interconnected with the traces before sealingly attaching the barrier member, are encapsulated within metal foil to provide an environmentally-sealed assembly featuring improved resistance to moisture diffusion and penetration/permeation of other substances characteristic of the assembly's service environment into the assembly. A filler material, also encapsulated within the metal foil, is operative to neutralize a predetermined amount of a penetrant, further improving the operability and service life of the assembly. Preferably, a relatively-rigid polymeric material is formed in touching contact with the substrate, as by overmolding the plastic material on the environmentally-sealed assembly, to thereby provide a plastic part incorporating the assembly.
Abstract:
The invention is an aluminum etchant and method for chemically milling aluminum, according to one embodiment, from a copper-aluminum-copper tri-metal layer to form electronic circuits. The tri-metal comprises copper circuit patterns present on opposing surfaces of an aluminum foil, one of the copper patterns being laminated on a substrate. The etchant comprises an aqueous solution of 50 to 500 g/l base selected from (a) sodium hydroxide, (b) potassium hydroxide, and (c) their mixture; and 60 to 500 g/l nitrate salt. The method comprises contacting the tri-metal with the etchant at a temperature between 25 and 95.degree. C. for a time sufficient to remove a desired amount of the aluminum layer and provide electronic circuitry (rigid/flexible/3-dimensional circuitry) which contains multiple conductive circuit layers.
Abstract:
A sputtering target device is provided for manufacturing solar cells. The target device includes a metal selected from a group consisting of copper, indium, and molybdenum and further includes antimony or antimony-containing compound mixed in a matrix of the metal. The target device comprises antimony of 0.1 to 20 wt % and the metal of at least 80 wt %. The target device is installed in a deposition system for forming a back electrode doped with antimony or for forming at least one precursor layer doped with antimony among a stack of multiple precursor layers for forming a semiconductor photovoltaic absorber material.
Abstract:
The present invention provides an apparatus and a method for manufacturing a CIGS absorber of a thin film solar cell. The apparatus includes a supply chamber configured to provide a flexible substrate coated with precursors. The apparatus further includes a reaction chamber coupled to the supply chamber for at least subjecting the precursors on the flexible substrate to a reactive gas at a first state to form an absorber material. Additionally, the apparatus includes a gas-balancing chamber filled with the reactive gas at a second state. The gas-balancing chamber is communicated with the reaction chamber for automatically updating the first state of the reactive gas to the second state. Moreover, the apparatus includes a control system to maintain the second state of the reactive gas in the gas-balancing chamber at a preset condition and to adjust the transportation of the flexible substrate through the reaction chamber.
Abstract:
A method for fabricating a thin-film solar cell. The method includes rolling a flexible substrate prepared with a metalized surface out of a roll to move linearly with a speed. The method further includes forming a back-electrode film overlying the metalized surface moving with the speed. Additionally, the method includes forming a stack of films comprising at least copper, gallium, and indium overlying the back-electrode film and forming a Se-alloy layer overlying the stack of films. Furthermore, the method includes depositing a Se—Na bearing film overlying the Se-alloy layer from a vacuum evaporator having at least two sources. Moreover, the method includes performing a thickness measurement in real time for the back-electrode film, the stack of films, and the Se-alloy layer on the flexible substrate moving with the speed to control the Se-alloy layer in a thickness of 10-100 nm corresponding to the Se—Na film in a thickness of 1-3 microns.
Abstract:
A nodular graphite, heat-resistant cast iron composition for use in engine systems. The composition contains carbon 1.5-2.4 weight %, silicon 5.4-7.0 weight %, manganese 0.5-1.5 weight %, nickel 22.0-28.0 weight %, chromium 1.5-3.0 weight %, molybdenum 0.1-1.0 weight %, magnesium 0.03-0.1 weight %, and a balance weight % being substantially iron. The composition has an austenitic matrix. Additionally, the composition exhibits excellent oxidation resistance at high temperature and excellent mechanical properties at both room and high temperatures. Thus, the composition can be a lower cost substitute material for Ni-Resist D5S under thermocycling conditions experienced by exhaust gas accessories and housings such as engine exhaust manifolds, turbocharger housings, and catalytic converter housings.
Abstract:
A solar cell has a first surface and the second surface areas. The first surface is a semi-cylindrical area or modified semi-cylindrical area. The first surface is a flattened area. Sunlight strikes the semi-cylindrical area of the solar cell surface with a maximum incident angle from sunrise to sunset. A mirror may be attached on the top surface of the solar cell to further improve the efficiency.
Abstract:
A nodular, compacted graphite or other hybrid or duplex graphite morphology cast high silicon iron is disclosed which contains up to 1.5% tungsten, up to 0.8% vanadium, and up to 1.2% niobium; and at least 60.0% iron, all percentages are based on the total weight of the composition. This cast iron exhibits high strength and good ductility over a wide temperature range compared to the conventional SiMo ductile iron. The compositions may further contain, up to 1.5% molybdenum and up to 1.0% chromium to offer improvements in material strength. The compositions may include 0.2 to 0.5% by weight aluminum and up to 1.2% chromium for further oxidation resistance and 0.5 to 5.0% nickel for corrosion resistance.