Abstract:
A preparation method for a power semiconductor device includes: providing a lead frame containing a plurality of chip mounting units, one side edge of a die paddle of each chip mounting unit is bent and extended upwardly and one lead connects to the bent side edge of the die paddle and extends in an opposite direction from the die paddle; attaching a semiconductor chip to the top surface of the die paddle; forming metal bumps on each electrode at the front of the semiconductor chip with a top end of each metal bump protruding out of a plane of the top surface of the lead; heating the metal bump and pressing a top end of each metal bump by a pressing plate forming a flat top end surface that is flush with the top surface of the lead; and cutting the lead frame to separate individual chip mounting units.
Abstract:
A power semiconductor device comprises a lead frame unit, a control die, a first MOSFET die and a second MOSFET die, wherein the lead frame unit comprises at least a die paddle for mounting the first and second MOSFET dies, a first pin and a second pin for connecting to top electrodes of the first and second MOSFET dies, a first row of carrier pins and a second row of carrier pins disposed in-line with the first and second pins respectively for the control die to mount thereon.
Abstract:
A power semiconductor device comprises a lead frame unit, a control die, a first MOSFET die and a second MOSFET die, wherein the lead frame unit comprises at least a die paddle for mounting the first and second MOSFET dies, a first pin and a second pin for connecting to top electrodes of the first and second MOSFET dies, a first row of carrier pins and a second row of carrier pins disposed in-line with the first and second pins respectively for the control die to mount thereon.
Abstract:
The invention relates to a semiconductor package of a flip chip and a method for making the semiconductor package. The semiconductor chip comprises a metal-oxide-semiconductor field effect transistor. On a die paddle including a first base, a second base and a third base, half-etching or punching is performed on the top surfaces of the first base and the second base to obtain plurality of grooves that divide the top surface of the first base into a plurality of areas comprising multiple first connecting areas, and divide the top surface of the second base into a plurality of areas comprising at least a second connecting area. The semiconductor chip is connected to the die paddle at the first connecting areas and the second connecting area.
Abstract:
A method of making a semiconductor packaged device comprises mounting onto a lead frame a bottom of a molded semiconductor chip having a first plastic package body covering a top face of a semiconductor chip, encapsulating the lead frame and the semiconductor chip with a second plastic package body with top surfaces of conductive contact bodies electrically connected to electrodes on the top surface of the semiconductor chip exposed and plating conductive pads on a top surface of the assembly structure to provide external electrical connections to the electrodes through the conductive contact bodies.
Abstract:
Preparation methods of forming packaged semiconductor device, specifically for flip-chip vertical power device, are disclosed. In these methods, a vertical semiconductor chip is flip-chip attached to a lead frame and then encapsulated with plastic packing materials. Encapsulated chip is then thinned to a predetermined thickness. Contact terminals connecting the chip with external circuit are formed by etching at least a bottom portion of the lead frame connected.
Abstract:
A semiconductor device comprises an aluminum alloy lead-frame with a passivation layer covering an exposed portion of the aluminum alloy lead-frame. Since aluminum alloy is a low-cost material, and its hardness and flexibility are suitable for deformation process, such as punching, bending, molding and the like, aluminum alloy lead frame is suitable for mass production; furthermore, since its weight is much lower than copper or iron-nickel material, aluminum alloy lead frame is very convenient for the production of semiconductor devices.
Abstract:
A packaging method with backside wafer dicing includes the steps of forming a support structure at the front surface of the wafer then depositing a metal layer on a centre area of the backside of the wafer after grinding the wafer backside to reduce the wafer thickness; detecting from the backside of the wafer sections of scribe lines formed in the front surface in the region between the edge of the metal layer and the edge of the wafer and cutting the wafer and the metal layer from the wafer backside along a straight line formed by extending a scribe line section detected from the wafer backside.
Abstract:
A semiconductor device, a method of manufacturing semiconductor devices and a circuit package assembly are described. A semiconductor device can have a semiconductor substrate with first and second surfaces and a sidewall between them. First and second conductive pads on the first and second surfaces are in electrical contact with corresponding first and second semiconductor device structures in the substrate. An insulator layer on the first surface and sidewall covers a portion of the first conductive pad on the first surface. An electrically conductive layer on part of the insulator layer on the first conductive pad and sidewall is in electrical contact with the second conductive pad. The insulator layer prevents the conductive layer from making electrical contact between the first and second conductive pads.
Abstract:
A double-side exposed semiconductor device includes an electric conductive first lead frame attached on top of a thermal conductive but electrical nonconductive second lead frame and a semiconductor chip flipped and attached on top of the first lead frame. The gate and source electrodes on top of the flipped chip form electrical connections with gate and source pins of the first lead frame respectively. The flipped chip and center portions of the first and second lead frames are then encapsulated with a molding compound, such that the heat sink formed at the center of the second lead frame and the drain electrode at bottom of the semiconductor chip are exposed on two opposite sides of the semiconductor device. Thus, heat dissipation performance of the semiconductor device is effectively improved without increasing the size of the semiconductor device.