Abstract:
An electrically conductive, thermosetting elastomeric composition is provided. The composition may comprise: an initially substantially non-electrically conductive, thermosetting base polymer; a particulate filler comprising electrically conductive particles; and an electrically conductive polymer additive. The non-electrically conductive, thermosetting base polymer, the particulate filler and the electrically conductive polymer additive are mixed substantially macroscopically homogeneously.
Abstract:
An electrical connector having electrostatic discharge protection comprises a body and an electrostatic discharge dissipative element. The body defines a socket having electrical contacts configured to make electrical contact with electrical contacts along a bottom surface of a component module when the component module is inserted in the socket. The electrostatic discharge dissipative element is configured to make contact with the electrical contacts along the bottom surface of the component module before the electrical contacts along the bottom surface of the component module make contact with the electrical contacts of the socket.
Abstract:
A mounting structure of an electronic component includes: a bump electrode included in the electronic component, the bump electrode having an internal resin as a core and a conductive film covering a surface of the internal resin, and elastically deforming so as to follow a shape of at least one corner of a terminal so that the conductive film makes direct conductive contact with at least part of a top surface of the terminal and at least part of a surface along a thickness direction of the terminal; a substrate having the terminal and the electronic component that is mounted on the substrate; and a holding unit provided to the substrate and the electronic component so as to hold a state in which the bump electrode electrically deformed makes conductive contact with the terminal.
Abstract:
A circuit board device, a wiring board connecting method, and a circuit board module device are provided for controlling a compression ratio of anisotropically conductive members within an optimal range, for restraining variations in the impact resilient force of the anisotropically conductive members even if an increased number of wiring boards are laminated, for restraining deformations of the wiring board and fluctuations in the impact resilient force of the anisotropically conductive members even if a static external force or the like is applied, for suppressing a linear expansion of the anisotropically conductive members, even if the ambient temperature changes, to increase the stability of electric connections, and for reducing the impact resilient force of the anisotropically conductive members to allow for a reduction in thickness. The circuit board device comprises wiring boards 101-104, anisotropically conductive members 105 placed between the individual wiring boards, functional blocks 106 separate from anisotropically conductive members 105 and are placed on the same plane as anisotropically conductive members 105 so as to enclose anisotropically conductive members 105, and a pair of holding blocks 107, 108 placed to sandwich wiring boards 101-104. These wiring boards 101-104 are kept compressed while they are clamped between pair of holding blocks 107, 108, so that they are electrically connected with each other by anisotropically conductive members 105.
Abstract:
In a semiconductor device (1), a package board (2) is provided in which a plurality of wiring layers are layered, a plurality of mounting pads (5) arranged in a matrix are provided to the uppermost wiring layer of the package board (2), and solder bumps (7) are connected to the mounting pads (5). A semiconductor chip (9) is mounted on the package board (2) via the solder bumps (7). The uppermost wiring layer of the package board (2) is formed from a resin material in which the Young's modulus is 1 GPa or lower when the temperature is 10 to 30° C., and the elongation at break is 50% or higher.
Abstract:
The present invention is to provide a printed wiring board in which malconnection or disconnection caused by a difference between coefficients of thermal expansion of a semiconductor chip and a printed wiring board can be decreased even when a highly-integrated semiconductor apparatus is mounted thereon and an electronic device using the same. An electronic device (4) according to the present invention includes a printed wiring board (1) with a component mounting pin (18) and a surface-mounting type semiconductor apparatus (2) with an electrode pad (3), wherein the component mounting pin (18) has elasticity and is urged against the electrode pad (3) to maintain electric connection.
Abstract:
An electronic device includes least two electronic components linked electrically to one another using a flexible connector. The flexible connector includes multiple conducting blades, and is interposed between the two electrical components such that longitudinal edges of the flexible connector are held in contact against respective connection pads of each of the electronic components. The flexible connector is ultimately compressed, respectively, against both electronic components. The electronic device is equipped with two additional conducting blades for checking the state of compression of the flexible connector. The two additional conducting blades include an electrical circuit for determining the state of compression of the flexible connector by a resistive measurement and integrating at least one additional conducting blade of the flexible connector.
Abstract:
According to the present invention, there is provided a holder having a pressure flange not to be easily disengaged from a small-sized electronic part in pressing and accommodating the holder having the small-sized electronic part in a mounting recess. A holder includes a projecting portion protruding from a pressing flange toward a cylinder axis of a holding portion, formed in a portion having a predetermined length of an inner edge of the pressing flange. With this construction, when the holder accommodating a small-sized electronic part is mounted to a casing of an apparatus, even if the pressing flange is rolled up and about to be disengaged from the small-sized electronic part, the projecting portion engages with the small-sized electronic part, thereby preventing the pressing flange from being rolled up.
Abstract:
A connecting part for ensuring a secure connection includes first connecting terminals that are arranged on one face of a supporting member and second connecting terminals that are arranged on the back face of the supporting member. The supporting member may have an elastic body. The connecting terminals are interconnected by conductive films which are formed on the face of the supporting member. Connecting parts are arranged between circuit boards on which electronic parts are mounted, and the circuit boards are mutually fixed in the state in which the connecting parts are compressed. The first and second connecting terminals are pushed against lands on the circuit boards by restoring force of the connecting parts, and then the circuit boards are electrically interconnected.