Abstract:
A flip chip structure formed on a semiconductor substrate includes a first plurality of copper pillars positioned directly over, and in electrical contact with respective ones of a plurality of contact pads on the front face of the semiconductor substrate. A layer of molding compound is positioned on the front face of the substrate, surrounding and enclosing each of the first plurality of pillars and having a front face that is coplanar with front faces of each of the copper pillars. Each of a second plurality of copper pillars is positioned on the front face of one of the first plurality of copper pillars, and a solder bump is positioned on a front face of each of the second plurality of pillars.
Abstract:
A PNP apparatus may include a robotic arm, and a PNP tool head carried by the robotic arm. The PNP tool head may include a body configured to apply bonding pressure to a first area of an electronic device, and a pick-up tip movable between an extended position and a retracted position relative to the body as the pick-up tip rests against a second area of the electronic device. The pick-up tip may define a vacuum passageway therethrough to couple a vacuum source to the second area of the electronic device.
Abstract:
The present disclosure is directed to a device that includes a substrate and a sensor formed on the substrate. The sensor includes a chamber formed from a plurality of integrated cavities, a membrane above the substrate, the membrane having a plurality of openings, each opening positioned above one of the cavities, and a plurality of diamond shaped anchors positioned between the membrane and the substrate, the anchors positioned between each of the cavities. A center of each opening is also a center of one of the cavities.
Abstract:
A non-lead (QFN) semiconductor package is disclosed. The package includes a die attach pad and a semiconductor die supported by the die attached pad. The semiconductor die includes a plurality of pads on an active surface thereof. The package further includes a plurality of terminal leads, an encapsulant that encapsulates the semiconductor die, and a redistribution layer including a plurality of interconnections electrically connecting the pads to the terminal leads. A method of making the package is also disclosed.
Abstract:
A method is described for making electronic modules includes molding onto a substrate panel a matrix panel defining a plurality of cavities, attaching semiconductor die to the substrate panel in respective cavities of the molded matrix panel, electrically connecting the semiconductor die to the substrate panel, affixing a cover to the molded matrix panel to form an electronic module assembly, mounting the electronic module assembly on a carrier tape, and separating the electronic module assembly into individual electronic modules. An electronic module is described which includes a substrate, a wall member molded onto the substrate, the molded wall member defining a cavity, at least one semiconductor die attached to the substrate in the cavity and electrically connected to the substrate, and a cover affixed to the molded wall member over the cavity.
Abstract:
An electronic device may include a bottom interconnect layer having a first electrically conductive via therein. The electronic device may also include an integrated circuit (IC) carried by said bottom interconnect layer, and an encapsulation material on the bottom interconnect layer and surrounding the IC. The encapsulation layer may have a second electrically conductive via therein aligned with the first electrically conductive via. The second electrically conductive via may have a cross-sectional area larger than a cross-sectional area of the first electrically conductive via.
Abstract:
Described herein are various embodiments of contacts that include different portions angled with respect to one another and methods of manufacturing devices that include such contacts. In some embodiments, a module may include a first portion of a contact that is disposed within a housing and a second portion that is disposed outside of the housing, with the second portion angled with respect to the first portion. Manufacturing such devices may include depositing a conductive material to electrically connect the contact to a contact pad of a substrate. In some embodiments, a deposition process for depositing the conductive material may have a minimum dimension, which defines a minimum dimension of a conductive material once deposited. In some such embodiments, a distance between a terminal end of the contact pin and the contact pad may be greater than the minimum dimension of the deposition process.
Abstract:
A micro-sensor device that includes a passivation-protected ASIC module and a micro-sensor module bonded to a patterned cap provides protection for signal conditioning circuitry while allowing one or more sensing elements in the micro-sensor module to be exposed to an ambient environment. According to a method of fabricating the micro-sensor device, the patterned cap can be bonded to the micro-sensor module using a planarizing adhesive that is chemically compatible with the sensing elements. In one embodiment, the adhesive material is the same material used for the dielectric active elements, for example, a photo-sensitive polyimide film.
Abstract:
A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed. Such a miniature integrated multi-sensor module that features low power consumption can be used in medical monitoring and mobile computing, including smart phone applications.
Abstract:
A semiconductor thermoelectric cooler includes P-type and N-type thermoelectric cooling elements. The P-type and N-type thermoelectric elements have a first portion having a first cross-sectional area and a second portion having a second cross-sectional area larger than the first cross-sectional area. The P-type and N-type thermoelectric cooling elements may, for example, be T-shaped or L-shaped. In another example, the thermoelectric cooling elements have a first surface having a first shape configured to couple to a first electrical conductor and a second surface opposite the first surface and having a second shape, different from the first shape, and configured to couple to a second electrical conductor. For example, the first surface may have a rectilinear shape of a first area and the second surface may have a rectilinear shape of a second area different from the first area. The semiconductor thermoelectric cooler may be manufactured using thin film technology.