Abstract:
An inspection system and method for inspecting the surface defects of the specimen is provided. The inspection system includes a laser focus module, a microscope objective module, an image pick-up module, and a process module. The laser focus module configured to emit laser beam on the specimen by a predetermined angle relative to a surface of the specimen, and to generate scattered light and reflected light when the laser beam irradiates on the surface defects of the specimen. The process module can calculate the real size of the defects by using the intensity information obtained from the image pick-up module and the microscope objective module or using the diameter information obtained from the reflected light image while the reflected light projects on a screen.
Abstract:
A method of fabricating a semiconductor device is described. A substrate having first and second areas is provided. A first patterned mask layer having at least one first opening in the first area and at least one second opening in the second area is formed over the substrate, wherein the first opening is smaller than the second opening. A portion of the substrate is removed with the first patterned mask layer as a mask to form first and second trenches respectively in the substrate in the first and second areas, wherein the width and the depth of the first trench are less than those of the second trench. A first dielectric layer is formed at least in the first and second trenches. A conductive structure is formed on the first dielectric layer on at least a portion of the sidewall of each of the first and second trenches.
Abstract:
A light emitting diode includes a substrate, a transitional layer on the substrate and an epitaxial layer on the transitional layer. The transitional layer includes a planar area with a flat top surface and a patterned area with a rugged top surface. An AlN material includes a first part consisting of a plurality of spheres and a second part consisting of a plurality of slugs. The spheres are on a top surface of the transitional layer, both at the planar area and the patterned area. The slugs are in grooves defined in the patterned area. Air gaps are formed between the slugs and a bottom surface of the epitaxial layer. The spheres and slugs of the AlN material help reflection of light generated by the epitaxial layer to a light output surface of the LED.
Abstract:
A semiconductor optoelectronic structure with increased light extraction efficiency and a fabrication method thereof are presented. The semiconductor optoelectronic structure includes continuous grooves formed under an active layer of the semiconductor optoelectronic structure to reflect light from the active layer and thereby direct more light through a light output surface so as to increase the light intensity from the semiconductor optoelectronic structure.
Abstract:
Described is a technology by which a consistent hashing table of bins maintains values representing nodes of a distributed system. An assignment stage uses a consistent hashing function and a selection algorithm to assign values that represent the nodes to the bins. In an independent mapping stage, a mapping mechanism deterministically maps an object identifier/key to one of the bins as a mapped-to bin.
Abstract:
An integrated chip package structure and method of manufacturing the same is by adhering dies on a ceramic substrate and forming a thin-film circuit layer on top of the dies and the ceramic substrate. Wherein the thin-film circuit layer has an external circuitry, which is electrically connected to the metal pads of the dies, that extends to a region outside the active surface of the dies for fanning out the metal pads of the dies. Furthermore, a plurality of active devices and an internal circuitry is located on the active surface of the dies. Signal for the active devices are transmitted through the internal circuitry to the external circuitry and from the external circuitry through the internal circuitry back to other active devices. Moreover, the chip package structure allows multiple dies with different functions to be packaged into an integrated package and electrically connecting the dies by the external circuitry.
Abstract:
A large-scale data processing system, a large-scale data processing method, and a non-transitory tangible machine-readable medium are provided. The large-scale data processing system comprises an interface and a processor. The interface accesses a multi-dimensional data model, wherein the multi-dimensional data model comprises a plurality of dimensions, the dimensions form a multi-dimensional space of measures, each dimension is a single space comprising a plurality of members with a common set of attributes, and each measure is a data element organized and accessible through the multi-dimensional space of the cross-product of all dimensions. The processor builds at least one Tree Object (TO), wherein the TO is derived by converting the multi-dimensional data model into an N-level tree data structure according to a level order of N attributes, each tree node in the TO meets all conditions of attributes for all ancestor nodes, and N is a positive integer.
Abstract:
An actuating apparatus includes a motion driving module rigidly coupled to a platform, a working stage driven by the motion driving module to move relative to the platform, a speckle image capturing module rigidly coupled to the working stage and capable of capturing a speckle image of a sub-region of a reference region of the platform, and a control module operable in a positioning mode, where the control module obtains a current position of the working stage in a coordinate system associated with the platform based on a comparison between the captured speckle image and reference speckle image information that is associated with and unique to the reference region, and controls the motion driving module to drive the working stage toward a target position in the coordinate system based on a difference between the current position and the target position.
Abstract:
An inner-layer heat-dissipating board and a multi-chip stack package structure having the inner-layer heat-dissipating board are disclosed. The inner-layer heat-dissipating board includes a metal board body formed with a plurality of penetrating conductive through holes each comprising a plurality of nano wires and an oxidative block having nano apertures filled with the nano wires. The multi-chip stack package structure includes a first chip and an electronic component respectively disposed on the inner-layer heat-dissipating board to thereby facilitate heat dissipation in the multi-chip stack structure as well as increase the overall package rigidity.
Abstract:
A thermal sensing system includes a circuit having a layout including standard cells arranged in rows and columns. First and second current sources provide first and second currents, respectively. The thermal sensing system includes thermal sensing units, first and second switching modules, and an analog to digital converter (ADC). Each thermal sensing unit is configured to provide a voltage drop dependent on a temperature at that thermal sensing unit. The first switching module is configured to select one of the thermal sensing units. The second switching module includes at least one switch controllable by a control signal. The at least one switch is configured to selectively couple the thermal sensing units, based on the control signal, to one of the first and second current sources, via the first switching module. The ADC is configured to convert an analog voltage, provided by the selected thermal sensing unit, to a digital value.