摘要:
The present invention is directed to thin film transistors using nanowires (or other nanostructures such as nanoribbons, nanotubes and the like) incorporated in and/or disposed proximal to conductive polymer layer(s), and production scalable methods to produce such transistors. In particular, a composite material comprising a conductive polymeric material such as polyaniline (PANI) or polypyrrole (PPY) and one or more nanowires incorporated therein is disclosed. Several nanowire-TFT fabrication methods are also provided which in one exemplary embodiment includes providing a device substrate; depositing a first conductive polymer material layer on the device substrate; defining one or more gate contact regions in the conductive polymer layer; depositing a plurality of nanowires over the conductive polymer layer at a sufficient density of nanowires to achieve an operational current level; depositing a second conductive polymer material layer on the plurality of nanowires; and forming source and drain contact regions in the second conductive polymer material layer to thereby provide electrical connectivity to the plurality of nanowires, whereby the nanowires form a channel having a length between respective ones of the source and drain regions.
摘要:
The present invention is directed to systems and methods for nanowire growth and harvesting. In an embodiment, methods for nanowire growth and doping are provided, including methods for epitaxial oriented nanowire growth using a combination of silicon precursors. In a further aspect of the invention, methods to improve nanowire quality through the use of sacrifical growth layers are provided. In another aspect of the invention, methods for transferring nanowires from one substrate to another substrate are provided.
摘要:
Methods, systems, and apparatuses for annealing semiconductor nanowires and for fabricating electrical devices are provided. Nanowires are deposited on a substrate. A plurality of electrodes is formed. The nanowires are in electrical contact with the plurality of electrodes. The nanowires are doped. A polarized laser beam is applied to the nanowires to anneal at least a portion of the nanowires. The nanowires may be aligned substantially parallel to an axis. The laser beam may be polarized in various ways to modify absorption of radiation of the applied laser beam by the nanowires. For example, the laser beam may be polarized in a direction substantially parallel to the axis or substantially perpendicular to the axis to enable different nanowire absorption profiles.
摘要:
The present invention is directed to systems and methods for nanowire growth and harvesting. In an embodiment, methods for nanowire growth and doping are provided, including methods for epitaxial oriented nanowire growth using a combination of silicon precursors. In a further aspect of the invention, methods to improve nanowire quality through the use of sacrifical growth layers are provided. In another aspect of the invention, methods for transferring nanowires from one substrate to another substrate are provided.
摘要:
An optical switch having an insulator under a heater element is disclosed. The insulator reduces the heat loss thereby making the switch more efficient. The insulator is fabricated embedded in the underlying substrate on which the heater and the optical intersection are fabricated. A method of fabricating the optical switch having an insulator is disclosed. A trench is etched on the substrate and filled with oxide or other suitable insulating material. Then, the heater and the optical intersection are fabricated above the insulator.
摘要:
An apparatus having a heating circuit including a resistor layer and a patterned conductor layer is disclosed. The pattern defines a current path that includes at least one portion of the resistor layer. When current is applied to the current path, heat is generated in the portion of the resistor layer that is a part of the current path. The heat is used to reflow solder to connect two components such as an integrated circuit chip (IC) to a multi-chip module (MCM) module. This localized electric heating method may be used to package multiple chips on a module. The apparatus having the heating circuit may be fabricated by first depositing a resistor layer on to a substrate. Then, a conductor layer is deposited and etched to define the current path.
摘要:
This disclosure provides systems, methods and apparatus for a via structure. In one aspect, an apparatus includes a substrate and a first electromechanical systems device on a surface of the substrate. The first electromechanical systems device includes a first metal layer and a second metal layer. A first via structure can be included on the surface of the substrate. The first via structure includes the first metal layer, the second metal layer, and a third metal layer. The first metal layer of the first electromechanical systems device may be the same metal layer as the first metal layer of the first via structure.
摘要:
This disclosure provides systems, methods and apparatus for a thin film stack with surface-conditioning buffer layers. In one aspect, the thin film stack includes a plurality of thin film layers each having a thickness greater than about 10 nm and a plurality of surface-conditioning buffer layers each having a thickness between about 1 nm and about 10 nm. The surface-conditioning buffer layers are alternatingly disposed between the thin film layers. Each of the surface-conditioning buffer layers are formed with the same or substantially the same thickness and composition. In some implementations, the surface-conditioning buffer layers are formed by atomic layer deposition.
摘要:
A plurality of MEMS devices are formed on a substrate, a sacrificial layer is formed to cover each of the MEMS devices and a protective cap layer is formed on the sacrificial layer. A release hole is formed through the protective cap layer to the underlying sacrificial layer, and a releasing agent is introduced through the release hole to remove the sacrificial layer under the protective cap layer and expose a MEMS device. Optionally, the MEMS device can be released with the same releasing agent or, optionally, with a secondary releasing agent. The release hole is solder sealed, to form a hermetic seal of the MEMS device. Optionally, release holes are formed at a plurality of locations, each over a MEMS device and the releasing forms a plurality of hermetic sealed MEMS devices on the wafer substrate, which are singulated to form separate hermetically sealed MEMS devices.
摘要:
The present invention is directed to systems and methods for nanowire growth and harvesting. In an embodiment, methods for nanowire growth and doping are provided, including methods for epitaxial oriented nanowire growth using a combination of silicon precursors, as well as us of patterned substrates to grow oriented nanowires. In a further aspect of the invention, methods to improve nanowire quality through the use of sacrifical growth layers are provided. In another aspect of the invention, methods for transferring nanowires from one substrate to another substrate are provided.