Abstract:
A method of forming a semiconductor device comprising a fuse is provided including providing a semiconductor-on-insulator (SOI) structure comprising an insulating layer and a semiconductor layer formed on the insulating layer, forming raised semiconductor regions on the semiconductor layer adjacent to a central portion of the semiconductor layer and performing a silicidation process of the central portion of the semiconductor layer and the raised semiconductor regions to form a silicided semiconductor layer and silicided raised semiconductor regions.
Abstract:
Enlarging the dummy electrode to the STI top width size by OPC cut mask correction and the resulting device are disclosed. Embodiments include forming an STI region in a silicon substrate, the STI region having a top width; and forming a dummy electrode on the STI region and a gate electrode on the silicon substrate, the dummy electrode having a width greater than or equal to the STI region top width.
Abstract:
A method of forming a semiconductor device structure includes providing a substrate with a semiconductor-on-insulator (SOI) configuration, the SOI substrate comprising a semiconductor layer formed on a buried oxide (BOX) layer which is disposed on a semiconductor bulk substrate, forming trench isolation structures delineating a first region and a second region within the SOI substrate, removing the semiconductor layer and the BOX layer in the first region for exposing the semiconductor bulk substrate within the first region, forming a first semiconductor device with an electrode in and over the exposed semiconductor bulk substrate in the first region, forming a second semiconductor device in the second region, the second semiconductor device comprising a gate structure disposed over the semiconductor layer and the BOX layer in the second region, and performing a polishing process for defining a common height level to which the electrode and the gate structure substantially extend.
Abstract:
The present disclosure provides, in various aspects of the present disclosure, a semiconductor device which includes a semiconductor stack disposed over a surface of a substrate and a gate structure partially formed over an upper surface and two opposing sidewall surfaces of the semiconductor stack, wherein the semiconductor stack includes an alternating arrangement of at least two layers formed by a first semiconductor material and a second semiconductor material which is different from the first semiconductor material.
Abstract:
The present disclosure provides, in various aspects, a method of forming a semiconductor device and accordingly formed semiconductor devices. In accordance with some illustrative embodiments herein, a fin is provided in an upper surface of a substrate, the fin having a height dimension and an initial width dimension. After forming a mask on the fin, wherein the mask only partially covers an upper surface of the fin, the fin is exposed to an etch process for removing material in accordance with the mask such that a channel portion connecting end portions of the fin is formed. Herein, a width dimension of the channel portion is smaller than a width dimension of the end portions. In accordance with some illustrative embodiments of the present disclosure, the channel portion may substantially have a cross-section of one of a triangular shape and a double-sigma shape.
Abstract:
One exemplary embodiment provides a method of making an integrated circuit. The method includes forming a dummy gate structure above a semiconductor substrate, etching an exposed semiconductor substrate outside the dummy gate structure, depositing silicon oxide over the dummy gate structure and the semiconductor substrate to form a silicon oxide layer, etching source and drain contact vias through the silicon oxide layer, implanting source and drain dopants through the source and drain contact vias, removing the dummy gate structure, forming a final gate structure, etching substantially all of the silicon oxide layer, and depositing an ultra low K dielectric to form an ultra low K dielectric layer.
Abstract:
A method of forming a transistor device is provided, including the subsequently performed steps of forming a gate electrode on a first semiconductor layer, forming an interlayer dielectric over the gate electrode and the first semiconductor layer, forming a first opening in the interlayer dielectric at a predetermined distance laterally spaced from the gate electrode on one side of the gate electrode and a second opening in the interlayer dielectric at a predetermined distance laterally spaced from the gate electrode on another side of the gate electrode, the first and second openings reaching to the first semiconductor layer, forming cavities in the first semiconductor layer through the first and second openings formed in the interlayer dielectric, and forming embedded second semiconductor layers in the cavities.
Abstract:
A structure comprises a semiconductor substrate, a semiconductor-on-insulator region and a bulk region. The semiconductor-on-insulator region comprises a first semiconductor region, a dielectric layer provided between the semiconductor substrate and the first semiconductor region, and a first transistor comprising an active region provided in the first semiconductor region. The dielectric layer provides electrical isolation between the first semiconductor region and the semiconductor substrate. The bulk region comprises a second semiconductor region provided directly on the semiconductor substrate.
Abstract:
The present disclosure relates to a semiconductor structure comprising a resistor, at least part of the resistor forming a meandering shape in a vertical direction with respect to a substrate of the semiconductor structure. The disclosure further relates to a semiconductor manufacturing process comprising a step for realizing at least one first fin, and a step for realizing a resistor comprising a meandering shape in a vertical direction based on the at least one first fin.
Abstract:
The present disclosure provides semiconductor device structures with a first PMOS active region and a second PMOS active region provided within a semiconductor substrate. A silicon germanium channel layer is only formed over the second PMOS active region. Gate electrodes are formed over the first and second PMOS active regions, wherein the gate electrode over the second PMOS active region is formed over the silicon germanium channel.