Abstract:
A gallium nitride (GaN) based light emitting device, wherein the device comprises a first surface and a second surface, and the first surface and second surface are separated by a thickness of less than 100 micrometers, and preferably less than 20 micrometers. The first surface may be roughened or textured. A silver or silver alloy may be deposited on the second surface. The second surface of the device may be bonded to a permanent substrate.
Abstract:
An (Al, Ga, In)N and ZnO direct wafer bonded light emitting diode (LED) combined with a shaped optical element in which the directional light from the ZnO cone or any high refractive index material in contact with the LED surface entering the shaped optical element is extracted to air.
Abstract:
A nonpolar III-nitride film grown on a miscut angle of a substrate. The miscut angle towards the direction is 0.75° or greater miscut and less than 27° miscut towards the direction. Surface undulations are suppressed and may comprise faceted pyramids. A device fabricated using the film is also disclosed. A nonpolar III-nitride film having a smooth surface morphology fabricated using a method comprising selecting a miscut angle of a substrate upon which the nonpolar III-nitride films are grown in order to suppress surface undulations of the nonpolar III-nitride films. A nonpolar III-nitride-based device grown on a film having a smooth surface morphology grown on a miscut angle of a substrate which the nonpolar III-nitride films are grown. The miscut angle may also be selected to achieve long wavelength light emission from the nonpolar film.
Abstract:
Highly planar non-polar GaN films are grown by hydride vapor phase epitaxy (HVPE). The resulting films are suitable for subsequent device regrowth by a variety of growth techniques.
Abstract:
An (Al, Ga, In)N light emitting device, such as a light emitting diode (LED), in which high light generation efficiency is realized by fabricating the device on non-polar or semi-polar III-Nitride crystal geometries. Because non-polar and semi-polar emitting devices have significantly lower piezoelectric effects than c-plane emitting devices, higher efficiency emitting devices at higher current densities can be realized.
Abstract:
Lateral epitaxial overgrowth of non-polar III-nitride seed layers reduces threading dislocations in the non-polar III-nitride thin films. First, a thin patterned dielectric mask is applied to the seed layer. Second, a selective epitaxial regrowth is performed to achieve a lateral overgrowth based on the patterned mask. Upon regrowth, the non-polar III-nitride films initially grow vertically through openings in the dielectric mask before laterally overgrowing the mask in directions perpendicular to the vertical growth direction. Threading dislocations are reduced in the overgrown regions by (1) the mask blocking the propagation of dislocations vertically into the growing film and (2) the bending of dislocations through the transition from vertical to lateral growth.
Abstract:
A method for growing an improved quality device by depositing a low temperature (LT) magnesium (Mg) doped nitride semiconductor thin film. The low temperature Mg doped nitride semiconductor thin film may have a thickness greater than 50 nm. A multi quantum well (MQW) active layer may be grown at a growth temperature and the LT Mg doped nitride semiconductor thin film may deposited on the MQW active layer at a substrate temperature no greater than 150° C. above the growth temperature.
Abstract:
A light emitting diode (LED) grown on a substrate doped with one or more rare earth or transition element. The dopant ions absorb some or all of the light from the LED's active layer, pumping the electrons on the dopant ion to a higher energy state. The electrons are naturally drawn to their equilibrium state and they emit light at a wavelength that depends on the type of dopant ion. The invention is particularly applicable to nitride based LEDs emitting UV light and grown on a sapphire substrate doped with chromium. The chromium ions absorb the UV light, exciting the electrons on ions to a higher energy state. When they return to their equilibrium state they emit red light and some of the red light will emit from the LED's surface. The LED can also have active layers that emit green and blue and UV light, such that the LED emits green, blue, red light and UV light which combines to create white light. Alternatively, it can have one active layer and grown on a sapphire substrate doped with Cr, Ti, and Co such that the substrate absorbs the UV light and emits blue, green, and red light. The invention is also capable of providing a tunable LED over a variety of color shades. The invention is also applicable to solid state laser having one or more active layers emitting UV light with the laser grown on a sapphire substrate doped with one or more rare earth or transition elements.
Abstract:
Optically flat cleaved facet mirrors are fabricated in GaN epitaxial films grown on sapphire by wafer fusing a GaN film with a sapphire substrate to a cubic substrate such as an InP or GaAs substrate. The sapphire substrate may then partially or entirely removed by lapping, dry etching, or wet etching away a sacrificial layer disposed in the interface between the sapphire substrate and the GaN layer. Thereafter, the cubic InP or GaN substrate is cleaved to produce the cubic crystal facet parallel to the GaN layer in which active devices are fabricated for use in lasers, photodetectors, light emitting diodes and other optoelectronic devices.
Abstract:
The methods and apparatus disclosed enable controlled growth of multicomponent metal oxide thin films, including high temperature superconducting (HTS) thin films, which are uniform and reproducible. The method and apparatus enable a controlled flow and pressure of a gaseous phase of metal containing molecules to be introduced into a reaction chamber, or into an analysis chamber, or into both. The flow into the reaction chamber enables deposition of metal oxides on a substrate and, therefore, growth of multicomponent metal oxide thin films, including HTS thin films, on the substrate. The flow into the analysis chamber enables compositional analysis of the gas. The apparatus also allows adjustment of the gaseous phase flow and pressure into the reaction chamber based upon the results of the compositional analysis. In one aspect of this invention, a heating mantle provides substantially uniform heating throughout the apparatus.