Abstract:
A sensor apparatus includes a substrate, a semiconductor device disposed over the substrate, the semiconductor device having a surface electrode structure, and a saccharide coating formed over the surface electrode structure. The saccharide coating can be removed prior to use. The semiconductor device can further include a well and optionally a bead disposed in the well.
Abstract:
A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
Abstract:
A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
Abstract:
An apparatus includes a device substrate including an array of sensors. Each sensor of the array of sensors can include a electrode structure disposed at a surface of the device substrate. The apparatus further includes a wall structure overlying the surface of the device substrate and defining an array of wells at least partially corresponding with the array of sensors. The well structure including an electrode layer and an insulative layer.
Abstract:
A method of manufacturing a sensor, the method including forming an array of chemically-sensitive field effect transistors (chemFETs), depositing a dielectric layer over the chemFETs in the array, depositing a protective layer over the dielectric layer, etching the dielectric layer and the protective layer to form cavities corresponding to sensing surfaces of the chemFETs, and removing the protective layer. The method further includes, etching the dielectric layer and the protective layer together to form cavities corresponding to sensing surfaces of the chemFETs. The protective layer is at least one of a polymer, photoresist material, noble metal, copper oxide, and zinc oxide. The protective layer is removed using at least one of sodium hydroxide, organic solvent, aqua regia, ammonium carbonate, hydrochloric acid, acetic acid, and phosphoric acid.
Abstract:
Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
Abstract:
Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in the concentration of inorganic pyrophosphate (PPi), hydrogen ions, and nucleotide triphosphates.
Abstract:
Methods and apparatuses relating to large scale FET arrays for analyte detection and measurement are provided. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes.
Abstract:
Various cell analysis systems of the present teachings can measure the electrical and metabolic activity of single, living cells with subcellular addressability and simultaneous data acquisition for between about 10 cells to about 500,000 cells in a single analysis. Various sensor array devices of the present teachings can have sensor arrays with between 20 million to 660 million ChemFET sensors built into a massively paralleled array and can provide for simultaneous measurement of cells with data acquisition rates in the kilohertz (kHz) range. As various ChemFET sensor arrays of the present teachings can detect chemical analytes as well detect changes in cell membrane potential, various cell analysis systems of the present teachings also provide for the controlled chemical and electrical interrogation of cells.
Abstract:
Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.