Abstract:
A wiring board and method of forming the wiring board. The wiring board includes a first substrate, and a second substrate having a smaller mounting area than a mounting area of the first substrate. A base substrate is laminated between the first substrate and the second substrate such that the first substrate extends beyond an edge of the second substrate, and at least one via formed in at least one of the first substrate or the second substrate. A thickness of a portion of the base substrate that is sandwiched between the first substrate and the second substrate is greater than a thickness of a portion of the base substrate that is not sandwiched between the first substrate and the second substrate.
Abstract:
A multilayer printed circuit board, wherein, on a resin-insulating layer that houses a semiconductor element, another resin-insulating layer and a conductor circuit are formed with conductor circuits electrically connected through a via hole, wherein an electromagnetic shielding layer is formed on a resin-insulating layer surrounding a concave portion for housing a semiconductor element or on the inner wall surface of the concave portion, and the semiconductor element is embedded in the concave portion.
Abstract:
A wiring board including a main substrate having a base material and a conductive pattern formed on the base material, and a flex-rigid printed wiring board provided to the main substrate and having a rigid substrate and a flexible substrate connected to each other. The flex-rigid printed wiring board has a conductive pattern formed on the rigid substrate and/or the flexible substrate. The conductive pattern of the main substrate is electrically connected to the conductive pattern of the flex-rigid printed wiring board.
Abstract:
A flexible wiring board includes a first flexible base material with a conductor pattern formed thereon, a second flexible base material disposed adjacent to the first flexible base material and an insulating layer covering the first flexible base material and the second flexible base material. The insulating layer exposes at least one portion of the first flexible base material. A conductor pattern is formed on the insulating layer, and a plating layer is provided connecting the conductor pattern of the first flexible base material and the conductor pattern on the insulating layer.
Abstract:
A printed wiring board includes an insulation layer having a surface, electrodes embedded in the insulation layer, a resistor formed on the surface of the insulation layer and electrically connected to the electrodes, and an external connection conductive pattern formed over the surface of the insulation layer and electrically connected to one or more electrodes. The insulation layer and the electrodes form a component-mounting surface on the surface of the insulation layer, the component-mounting surface is substantially leveled with the surface of the insulation layer and includes a resistor forming region on which the resistor is formed, and the external connection conductive pattern is separated by a space from the resistor.
Abstract:
A multilayer printed wiring board comprises a plurality of insulating layers which is about 100 μm or less in thickness and a plurality of conductor circuits formed on the insulating layers. Each of a plurality of viaholes electrically connecting conductor circuits on the insulating layers to each other is formed tapered inwardly from the surface of the insulating layer and the viaholes are disposed opposite to each other to form a multistage stacked vias.
Abstract:
A method of manufacturing a flex-rigid wiring board includes positioning a flexible board and a non-flexible substrate adjacent to each other, forming a metal layer over the flexible board such that the metal layer is formed to stop laser irradiation from reaching into the flexible board, forming an insulating layer such that the insulating layer covers the metal layer, the flexible board and the non-flexible substrate, irradiating laser upon the insulating layer such that a portion of the insulating layer covering the metal layer is cut; and removing the portion of the insulating layer covering the metal layer from the flexible board such that at least a portion of the flexible board is exposed.
Abstract:
A method for manufacturing a multi-piece substrate includes preparing a first frame having a connecting portion to which a first piece substrate is to be connected, forming on a portion of the first piece substrate connected to a second frame a conductive pattern having a contour corresponding to the periphery of the connecting portion of the first frame, irradiating laser along the boundary between the second frame and the conductive pattern on the first piece substrate such that the first piece substrate having a joint portion which engages with the connecting portion of the first frame is detached from the second frame, and fitting the joint portion of the first piece substrate into the connecting portion of the first frame such that the first piece substrate is connected to the first frame.
Abstract:
A method for manufacturing a flex-rigid wiring board including forming a rigid substrate including a rigid base material, a separator provided over the rigid base material, and insulation layers laminated over the rigid base material after the separator is provided, removing the separator together with a portion of the insulation layers after the laminating of the insulation layers, and forming a recessed portion configured to accommodate an electronic component according to a shape of the separator on a surface of the rigid substrate.
Abstract:
A wiring board has a first wiring board having a first solder-resist layer, a second wiring board connected to the first wiring board and positioned in a first opening portion formed in the first solder-resist layer of the first wiring board, and a third wiring board connected to the first wiring board and positioned in a second opening portion formed in the first solder-resist layer of the first wiring board such that the second wiring board and the third wiring board are on the same side of the first wiring board. The first opening portion of the first wiring board and the second opening portion of the first wiring board form either a common opening portion accommodating the second and third wiring boards in the first solder-resist layer or separate opening portions separately accommodating the second wiring board and the third wiring board in the first solder-resist layer.