Abstract:
Radio-frequency (RF) integrated circuit (IC) (RFIC) packages employing a substrate sidewall partial shield for electro-magnetic interference (EMI) shielding. A RFIC package includes an IC die layer that includes a RFIC die(s) mounted on a substrate that includes substrate metallization layers, a substrate core, and substrate antenna layers. The RFIC package includes an EMI shield surrounding the IC die layer and extending down shared sidewalls of the IC die layer and the substrate. The EMI shield extends down the sidewalls of the IC die layer and substrate metallization layers of the substrate to at least the interface between the substrate metallization layers and the substrate core, and without extending adjacent to the sidewall of the substrate antenna layers. In this manner, antenna performance of the antenna module may not be degraded, because extending the EMI shield down sidewalls of the substrate antenna layers can create a resonance cavity in the substrate.
Abstract:
Examples herein provide more integrated circuit packages that allow direct bonding of semiconductor chips to the package, smaller line/spacing of traces, and uniform vias with no capture or cover pads. For example, an integrated circuit (IC) package may include a plurality of pads and a plurality of traces on a substrate with at least two of the plurality of traces located between two of the plurality of pads, and a dielectric layer that completely covers the plurality of traces and partially covers the plurality of pads.
Abstract:
An antenna-in-package (AiP) module is described. The AiP module includes an antenna sub-module. The antenna sub-module is composed of a first package substrate including an antenna side surface having a first group of antennas placed along a first portion of the antenna side surface and a second group of antennas placed along a second portion of the antenna side surface. The first package substrate is composed of a non-linear portion between the first group of antennas and the second group of antennas. The AiP module includes an active circuit sub-module placed on an active side surface of the first package substrate opposite the first group of antennas or the second group of antennas on the antenna side surface of the first package substrate.
Abstract:
A device and method of fabricating are provided. The device includes a substrate having a first side and an opposite second side, a cavity defined within the substrate from the first side, a die coupled to a floor of the cavity and having a conductive pad on a side of the die distal to the floor of the cavity. A laminate layer coupled to the second side of the substrate may be included. A hole may be drilled, at one time, through layers of the device, through the die, and through the conductive pad. The hole extends through and is defined within the laminate layer (if present), the second side of the substrate, the die, and the conductive pad. A conductive material is provided within the hole and extends between and through the laminate layer (if provided), the second side of the substrate, the die, and the conductive pad.
Abstract:
An integrated circuit package includes a substrate/interposer assembly having a plurality of conductive contacts and a plurality of conductive posts, such as copper posts, electrically coupled to at least some of the conductive contacts in the substrate/interposer assembly. The conductive posts are surrounded by a protective dielectric, such as a photoimageable dielectric (PID). An integrated circuit die may be disposed on the substrate/interposer assembly within an interior space surrounded by the dielectric. An additional integrated circuit die may be provided in a package-on-package (POP) configuration.
Abstract:
Some novel features pertain to a substrate that includes a first dielectric layer and a bridge structure. The bridge structure is embedded in the first dielectric layer. The bridge structure is configured to provide an electrical connection between a first die and a second die. The first and second dies are configured to be coupled to the substrate. The bridge structure includes a first set of interconnects and a second dielectric layer. The first set of interconnects is embedded in the first dielectric layer. In some implementations, the bridge structure further includes a second set of interconnects. In some implementations, the second dielectric layer is embedded in the first dielectric layer. The some implementations, the first dielectric layer includes the first set of interconnects of the bridge structure, a second set of interconnects in the bridge structure, and a set of pads in the bridge structure.
Abstract:
A package on package (PoP) device that includes a first package, a second package that is coupled to the first package, and at least one gap controller located between the first package and the second package, where the at least one gap controller is configured to provide a minimum gap between the first package and the second package. The first package includes a first electronic package component (e.g., first die). In some implementations, the at least one gap controller is coupled to the first package, but free of coupling with the second package. The at least one gap controller is located on or about a center of the first package. The at least one gap controller may be located between the first electronic package component (e.g., first die) and the second package. The package on package (PoP) device may include an encapsulation layer between the first package and the second package.
Abstract:
Some features pertain to an integrated circuit device that includes a first package substrate, a first die coupled to the first package substrate, a second package substrate, and a solder joint structure coupled to the first package substrate and the second package substrate. The solder joint structure includes a solder comprising a first melting point temperature, and a conductive material comprising a second melting point temperature that is less than the first melting point temperature. In some implementations, the conductive material is one of at least a homogeneous material and/or a heterogeneous material. In some implementations, the conductive material includes a first electrically conductive material and a second material. The conductive material is an electrically conductive material.
Abstract:
Some implementations provide a semiconductor device that includes a substrate coupled to a die through a thermal compression bonding process. The semiconductor device also includes a trace coupled to the substrate. The trace includes a first conductive material having a first oxidation property. The trace also includes a first surface layer including a second conductive material having a second oxidation property. The second oxidation property is less susceptible to oxidation than the first oxidation property. The first and second conductive materials are configured to provide an electrical path between the die and the substrate. The first surface layer has a thickness that is 0.3 microns (μm) or less.
Abstract:
An integrated circuit (IC) substrate that includes a second patterned metal layer formed in between a first patterned metal layer is disclosed. A dielectric layer formed on the first patterned metal layer separates the two metal layers. A non-conductive layer is formed on the dielectric layer and the second patterned metal layer.