Abstract:
A reactor system operable to facilitate a chemical reaction in a reaction medium flowing therethrough. The reactor system includes a heat exchanger for heating the reaction medium and a disengagement vessel for disengaging vapor from the heated reaction medium.
Abstract:
A tube bundle apparatus for thermal exchange operations at high pressures and temperatures, under conditions of high aggressiveness of process fluids. The tube bundle includes a series of tubes whose internal wall includes a material selected from titanium, zirconium, or an alloy thereof, resistant to aggression of fluids, in which at least one of access chambers to the tube bundle is delimited by a wall including at least the following three metallic layers in succession: a) an external layer for tolerating pressure load, subject to corrosion by contact with the highly aggressive process fluid; b) an intermediate layer of stainless steel; (c) an anticorrosive lining in contact with the highly corrosive fluid, of a material selected from titanium, zirconium, or an alloy thereof. The apparatus can be particularly used as an exchanger/reactor, for example as a stripper, in the high pressure cycle of synthesis processes of urea.
Abstract:
The invention is directed to polyester processes that utilizes a pipe reactor in the esterification, polycondensation, or both esterification and polycondensation processes. Pipe reactor processes of the present invention have a multitude of advantages over prior art processes including improved heat transfer, volume control, agitation and disengagement functions.
Abstract:
A multi-level tubular reactor operable to facilitate a chemical reaction in a reaction medium flowing therethrough. The tubular reactor can include a plurality of horizontally elongated and vertically spaced reactor segments coupled to and extending outwardly from a common header. One or more of the reactor segments can contain a tray that divides the internal volume of the reactor segment into upper and lower chambers. The reaction medium can flow away from the header in the upper chambers and back to the header in the lower chambers.
Abstract:
A multi-level tubular reactor operable to facilitate a chemical reaction in a reaction medium flowing therethrough. The tubular reactor can include a horizontally elongated reactor segment containing a tray that divides the internal volume of the reactor segment into upper and lower chambers. The reaction medium can flow through the upper and lower in generally opposite directions.
Abstract:
The invention is directed to polyester processes that utilizes a pipe reactor in the esterification, polycondensation, or both esterification and polycondensation processes. Pipe reactor processes of the present invention have a multitude of advantages over prior art processes including improved heat transfer, volume control, agitation and disengagement functions.
Abstract:
A reactor including a reactor vessel and heat exchange tubes provided in the reactor vessel. The reactor vessel includes a tubesheet and is configured to receive a reaction fluid. The tubesheet has a first plate member configured to contact the reaction fluid and a second plate member configured to not contact the reaction fluid. Heat exchange tubes are provided in the reactor vessel and fixed to the first plate member. The heat exchange tubes are configured to receive a heat exchange medium. At least a portion of the first plate member configured to contact the reaction fluid is made of a metal that has a high corrosion-resistance against the reaction liquid, and the second plate member is made of a metal that has a low corrosion-resistance against the reaction liquid. The second plate member is detachably fixed to a remainder of the reactor vessel.
Abstract:
For a reforming device that generates fuel gas for fuel cells by decomposing hydrocarbon compounds such as natural gas and then using a hydrogen separation composite to selectively transmit hydrogen, a hydrogen separation composite having the following structure is used. A porous support medium made of ceramics, etc. is formed, and a hydrogen separation metal is supported in the pores so as to fill the inside of the support medium. It is also possible to support a reforming catalyst. By doing this, it is possible to increase the area at which the hydrogen separation metal contacts gas, so the hydrogen transmission performance is increased. Furthermore, to prevent raw material gas leaks due to pin holes, high pressure gas is supplied to the hydrogen extraction side, and the total pressure is made higher than the pressure on the raw material gas supply side without making the hydrogen partial pressure higher. By using these means, it is possible to increase the hydrogen separation performance for the reforming device and to make the device more compact.
Abstract:
Apparatus for olefin polymerization includes one or more shell and tube olefin polymerization reactors, each of which has an olefin polymerization reaction mixture inlet connection and a crude polyolefin product outlet connection. Each reactor is equipped with a recirculation system including a pump arranged to circulate a reaction mixture through the tube side of the reactor independently of the introduction of olefin polymerization reaction mixture into the reactor. The apparatus may also include an inlet reaction mixture distribution manifold and an outlet polymerization reaction mixture collection manifold interconnecting the reactors for operation in parallel. The apparatus also includes catalyst composition and catalyst modifier inlets for each reactor arranged such that a catalyst modifier to may be introduced into each reactor at a rate which is independent of the introduction of catalyst composition.
Abstract:
An apparatus for performing continuous flow chemical reactions such as oxidation, oxidative dehydrogenation and partial oxidation processes involving a reactor design characterized by controlled/optimized addition of a reactant with the objective of: (i) avoiding the explosion regime of the reactant mixture (e.g., hydrocarbon/oxidant mixture); (ii) maximizing the selectivity of the reaction to the desired product; (iii) limiting the reactor temperature gradient and therefore the threat of reaction runaway; and (iv) controlling the operating temperature of the reaction zone so that desirable temperature range is maintained over the entire zone.