Abstract:
In a surface acoustic wave device, a plurality of surface acoustic wave elements include piezoelectric bodies having the same cut-angle. A propagation azimuth of a surface acoustic wave in at least one of surface acoustic wave elements is different from a propagation azimuth of a surface acoustic wave in at least another one of the surface acoustic wave elements. In each of the surface acoustic wave elements, a confinement layer configured to confine the surface acoustic wave inside the piezoelectric body is disposed on the piezoelectric body at the side opposite to the side where an electrode is located.
Abstract:
A SAW device includes a SAW chip formed of a piezoelectric substrate and an IDT formed thereon, a base substrate that supports the SAW chip, and a fixing member that fixes the SAW chip to the base substrate. The SAW chip that forms a cantilever is supported by the base substrate via the fixing member in a position where the IDT does not overlap with the fixing member in a plan view of the SAW chip. The length W of the SAW chip in a y-axis direction and the length D of the fixing member in the y-axis direction satisfy 1
Abstract:
A supporting substrate and a piezoelectric substrate are prepared. A surface of the supporting substrate is bonded to the backside of the piezoelectric substrate with an organic adhesive layer interposed therebetween to form a laminated substrate. Subsequently, a peripheral surface of the laminated substrate is ground such that a peripheral surface of the piezoelectric substrate, a peripheral surface of the organic adhesive layer, and a peripheral surface of the supporting substrate on the side of the organic adhesive layer are made flush with each other. Subsequently, the surface of the piezoelectric substrate is polished to reduce the thickness of the piezoelectric substrate and performing mirror polishing of the surface.
Abstract:
In a SAW device, a first area placed at a surface of a measurement subject directly under a propagation portion is fixed to the measurement subject, and a second area placed at the surface of the measurement subject directly under both a drive electrode and a reflector is not fixed to the measurement subject. When a strain is generated in the measurement subject, a strain is generated only in the propagation portion, and a phase change is generated in a surface acoustic wave reflected by the reflector. Because the phase change is hardly affected by a temperature change, the strain of the measurement subject can be measured based on the phase change. Because a resonant frequency of the SAW device is changed by the temperature change, but is not affected by the strain of the measurement subject, a temperature can be measured based on a resonant frequency change.
Abstract:
The invention is an adhesive, in particular, for components that operate with surface acoustic waves, including a polymer matrix filled with mineral filler particles. The filler is selected from non-conductive or semi-conductive materials and is contained in the adhesive in such a proportion that the total density of the adhesive when cured is greater than 2000 kg/m3.
Abstract translation:本发明是一种粘合剂,特别是用于与表面声波一起操作的部件,包括填充有矿物填料颗粒的聚合物基体。 填料选自非导电或半导电材料,并以粘合剂固化时的总密度大于2000kg / m 3的比例包含在粘合剂中。
Abstract:
A SAW device package includes a SAW die, a molding compound, and conductive leads. The SAW die includes a piezoelectric substrate having a transducer-mounting surface, transmitting and receiving transducers that are formed on the transducer-mounting surface and that have conductive connecting pads, and a cap that is formed on and that is reduced in size from the transducer-mounting surface and that cooperates with the substrate to define an embedded air cavity therebetween in such a manner that the transmitting and receiving transducers are confined in the embedded air cavity. The SAW die is encapsulated by the molding compound. The leads are connected electrically to the connecting pads and extend outwardly of the molding compound.
Abstract:
A method for adjusting frequency of a surface acoustic wave device includes performing a frequency adjustment. The surface acoustic wave device includes a substrate including at least one of a lithium tantalate substrate, a lithium niobate substrate, and a lithium tetraborate substrate. The surface acoustic wave device further includes an IDT electrode formed on the substrate that excites a pseudo-longitudinal leaky surface acoustic wave. The performing includes frequency adjustment by adjusting a thickness of the substrate at a side opposite in a thickness direction to a side on which the IDT electrode is formed.
Abstract:
The invention provides a surface acoustic wave device capable of precisely controlling a frequency, of reducing changes in the center frequency with the lapse of time after controlling the frequency, and of performing a stable operation for a long time. The thickness of an IDT electrode formed on a quartz substrate is set to be slightly larger than the desired thickness so that the center frequency is slightly lower than the desired frequency. Next, a voltage is applied to the IDT electrode and the center frequency is measured. At this time, the measured center frequency is slightly lower than the desired frequency. The rear surface of the quartz substrate is etched while checking the measured center frequency. As a result, the measured center frequency gradually increases and approaches the desired frequency by etching the rear surface of the quartz substrate. Further, the rear surface of the quartz substrate is continuously etched until the center frequency is the desired frequency. The etching is stopped at the point of time where the measured center frequency is the desired frequency.
Abstract:
A method of making a plurality of sealed assemblies is provided which includes a) assembling a first element to a second element so that a bottom surface of the first element faces downwardly toward a front surface of the second element and a top surface of the first element faces upwardly away from the second element; and (b) forming ring seals surrounding regions of the front surface of the second element by introducing flowable material between the first element and the second element from the top surface of the first element through openings in the first element. A chip is provided which includes: (a) a body defining a front surface and one or more circuit elements on or within the body; (b) one or more bond pads exposed at the front surface in a bond pad region; and (c) a metallic ring exposed at the front surface, the ring substantially surrounding the bond pad region. Sealed chip assemblies are formed by sealing an array of the chips, e.g., in wafer form, to a cap element.
Abstract:
The invention provides a surface acoustic wave device capable of precisely controlling a frequency, of reducing changes in the center frequency with the lapse of time after controlling the frequency, and of performing a stable operation for a long time. The thickness of an IDT electrode formed on a quartz substrate is set to be slightly larger than the desired thickness so that the center frequency is slightly lower than the desired frequency. Next, a voltage is applied to the IDT electrode and the center frequency is measured. At this time, the measured center frequency is slightly lower than the desired frequency. The rear surface of the quartz substrate is etched while checking the measured center frequency. As a result, the measured center frequency gradually increases and approaches the desired frequency by etching the rear surface of the quartz substrate. Further, the rear surface of the quartz substrate is continuously etched until the center frequency is the desired frequency. The etching is stopped at the point of time where the measured center frequency is the desired frequency.