Abstract:
Thermoplastic, flame-retarded plastic moulding compounds with improved mechanical properties, in particular for LDS applications, are described. The thermoplastic moulding compound consists of: (A) 21-81.9 wt. % thermoplastic material, consisting of (A1) 55-100 wt. % polyamide, containing at least 50 wt. % partly aromatic, partly crystalline polyamide; (A2) 0-45 wt. % non-polyamide based thermoplastic material, wherein (A1) and (A2) add up to 100 wt. % component (A); (B) 10-70 wt. % glass fibres; (C) 0.1-10 wt. % LDS additive or a mixture of LDS additives; (D) 8-18 wt. % halogen-free flame retardant; (E) 0-40 wt. % particulate filler, different from (C); (F) 0-2 wt. % other further additives; wherein the sum of (A)-(F) makes up 100 wt. %.
Abstract:
The invention is directed to a matting and/or frosting additive concentrate for polymers or polymer blends, said additive comprising to 75% by weight of hollow glass microspheres and 20 to 95% by weight of a liquid or waxy carrier material and optionally up to 75% by weight of additives.
Abstract:
Provided is a resin composition capable of achieving a higher plating property. The resin composition comprises, relative to 100 parts by weight of a resin component comprising 30 to 100% by weight of a polycarbonate resin and 70% by weight or less of a styrene-based resin, 10 to 100 parts by weight of a glass filler and 2 to 20 parts by weight of a laser direct structuring additive,wherein the laser direct structuring additive comprises a metal oxide particle comprising titanium oxide coated with a composition comprising tin as a main component and antimony.
Abstract:
Heat and light-stabilized polyamide compositions containing a stabilization system that includes copper oxide and KBr, and have an excellent preservation of color and of the mechanical properties thereof after exposure to heat or to light; these compositions are especially useful for producing shaped articles in the automotive field.
Abstract:
Provided is a thermoplastic resin molded article excellent in bending strength, flexural modulus and Charpy impact strength, on which the plated layer may be formed in a successful manner. The thermoplastic resin composition for laser direct structuring comprising, per 100 parts by weight of the thermoplastic resin, 10 to 150 parts by weight of an inorganic fiber and 1 to 30 parts by weight of a laser direct structuring additive, the laser direct structuring additive containing at least one of copper, antimony and tin, and having a Mohs hardness 1.5 or more smaller than the Mohs hardness of the inorganic fiber.
Abstract:
The present invention discloses a heat-resistant polyamide composition and application thereof. The composition comprises the following components in percentage by weight: 40% to 90% of heat-resistant polyamide resin, 5% to 35% of mineral fiber A, 0 to 35% of mineral filler B, 0.1% to I% of light stabilizer, 0.1% to 1% of flow modifier and 0.1% to 1% of antioxidant. In the present invention, heat-resistant polyamide resin with the ratio of amine-terminated group and carboxyl-terminated group between 0.1 and 0.8 is selected to be matched with deformed glass fibers with an aspect ratio of 2 to 6, the mineral filler B and the flow modifier to obtain the heat-resistant polyamide composition. The heat-resistant polyamide composition not only has high initial whiteness, high reflectivity and excellent heat resistance, but also has good moldability and good dimensional stability; therefore, the heat-resistant polyamide composition is capable of being applied for preparing the reflecting supports for s toll light sources as LCD backlight of portable phones, computers, televisions and the like, as well as headlights of automotive vehicles, instrument panels and lighting appliances, etc.
Abstract:
The present invention provides an organic/inorganic compositive dispersant and a method for producing the same. The compositive dispersant comprises a complex of inorganic clay and an organic surfactant. The compositive dispersant is produced by reacting inorganic clay with the organic surfactant in a solvent to generate a complex. The inorganic clay is layered or platelet. The organic surfactant is an anionic surfactant such as alkyl sulfates, or a nonionic surfactant such as octylphenol polyethoxylate and polyoxyethylene alkyl ether. The compositive dispersant may be used to produce electrolytes of a solar cell or to increase the hardness of an epoxy resin.
Abstract:
A flame retardant thermoplastic resin composition includes (A) about 20 to about 99.49 wt % of an aromatic polyamide resin; (B) 0 to about 50 wt % of a polyphenylene sulfide resin; (C) about 0.5 to about 30 wt % of a phosphinic acid metal salt flame retardant; (D) about 0.01 to about 10 wt % of a zinc compound; and (E) 0 to about 70 wt % of a filler comprising an organic filler, an inorganic filler, or a combination thereof. The flame retardant thermoplastic resin composition can have excellent heat resistance, mechanical strength and processability, a low moisture absorption rate and can inhibit corrosion of a metal surface of an extruder or a mold. The flame retardant thermoplastic resin composition can be used for various electrical electronic parts or auto parts as an environmentally friendly flame retardant thermoplastic resin composition.
Abstract:
The present invention relates to the use of polymer blends for producing slit film tapes comprising: A) 30% to 50% by weight of a biodegradable, aliphatic-aromatic polyester; B) 50% to 70% by weight of polylactic acid and C) 0% to 2% by weight of a compatibilizer.
Abstract:
A method for making high-pressure sheet gasketing material is provided that employs an elastomer, such as natural rubber and/or acylonitrile-butadiene rubber. Tert-butyl acetate is added to dissolve the elastomer. Other components may then be mixed with the dissolved elastomer and may include, for example, antioxidants, colorants, curing agents, curing accelerators, reinforcing fillers, and fibers such as organic and/or mineral fibers. The resulting dough may be formed into a high-pressure sheets, for use as gasketing material, using a two-roll sheeter machine, or the like.