Abstract:
A method for producing optoelectronic semiconductor devices and an optoelectronic semiconductor device are disclosed. In an embodiment, the method includes providing a plurality of semiconductor chips for producing electromagnetic radiation, arranging the plurality of semiconductor chips in a plane, forming a housing body composite, at least some regions of which are arranged between the semiconductor chips, forming a plurality of conversion elements, wherein each conversion element comprises a wavelength-converting conversion material and is arranged on one of the semiconductor chips, encapsulating the plurality of conversion elements at least on their lateral edges by an encapsulation material, and separating the housing body composite into a plurality of optoelectronic semiconductor components.
Abstract:
A semiconductor component includes first and second connection contacts provided to electrically contact a semiconductor body, a carrier on which a semiconductor chip is arranged, the carrier including a base body including a chip mounting surface and a connection surface opposite the chip mounting surface and at least one side surface, that connects the chip mounting surface to the connection surface, a first electrically conductive contact layer electrically conductively connected to the first connection contact, and a second electrically conductive contact layer electrically conductively connected to the second connection contact, wherein the first and the second contact layer are applied to the base body and each include a first partial region arranged on the chip mounting surface, a second partial region arranged on a side surface and a third partial region arranged on the connection surface, and wherein the base body contains a radiation-transmissive base material.
Abstract:
A radiation-emitting semiconductor component and a method for producing a plurality of semiconductor components are disclosed. In an embodiment the component includes a semiconductor chip comprising a semiconductor layer sequence, a front side and a rear side opposite the front side, and a molded body molded on to the semiconductor chip at least in some places. The component further includes a thermal connector located on a rear side of the semiconductor component, wherein the rear side of the semiconductor component is opposite the front side of the semiconductor chip, wherein the thermal connector extends to the rear side of the semiconductor chip, wherein at least one electrical connection surface is located on the front side of the semiconductor chip, and wherein the at least one electrical connection surface is electrically-conductively connected to an electrical contact surface of the semiconductor component via a contact path running on the molded body.
Abstract:
An optoelectronic component includes a composite body including a molded body; and an optoelectronic semiconductor chip embedded into the molded body, wherein the optoelectronic semiconductor chip includes a first electrical contact on its top side, a first top side metallization is arranged on the top side of the composite body and electrically conductively connects the first electrical contact to the through contact, a second top side metallization is arranged on the top side of the composite body and electrically insulated with respect to the first top side metallization, the second top side metallization completely delimits a part of the top side of the optoelectronic semiconductor chip, and a wavelength-converting material is arranged in a region completely delimited by the second top side metallization on the top side of the composite body, the wavelength-converting material extending as far as the second top side metallization.
Abstract:
An optoelectronic semiconductor component includes a carrier having a carrier top side and an opposing carrier underside, wherein the carrier top sides each have a larger area than the associated carrier undersides, the carrier parts fixedly connect to one another via at least one potting body and the potting body together with the carrier parts represents a bearing component of the semiconductor component so that all carrier undersides end flush with the potting body, the light-emitting semiconductor chips electrically connect in series, the metal layer on the carrier top side is structured into conductor tracks and into electrical connection surfaces, and the electrical connection surfaces on the carrier top side are electrically insulated from the associated carrier underside so that the carrier underside of the carrier part the semiconductor chips are arranged on is potential-free and is completely covered with the metal layer.
Abstract:
A method produces a plurality of optoelectronic modules, and includes: A) providing a metallic carrier assembly with a plurality of carrier units; B) applying a logic chip, each having at least one integrated circuit, to the carrier units; C) applying emitter regions that generate radiation, which can be individually electrically controlled; D) covering the emitter regions and the logic chips with a protective material; E) overmolding the emitter regions and the logic chips so that a cast body is formed, which joins the carrier units, the logic chips and the emitter regions to one another; F) removing the protective material and applying electrical conductor paths to the upper sides of the logic chips and to a cast body upper side; and G) dividing the carrier assembly into the modules.
Abstract:
A housing for an optical component is provided in various embodiments. The housing has a leadframe section and a mold compound. The leadframe section is formed from an electrically conductive material and has a first side and a second side facing away from the first side. On the first side, the leadframe section has at least one first receiving region for receiving the optical component and/or at least one contact region for electrically contacting the optical component. The leadframe section has at least one trench which is formed in the leadframe section on the first side thereof alongside the receiving region and/or the contact region. The leadframe section is embedded in the mold compound. The mold compound has at least one receiving recess in which the first receiving region and/or the contact region and the trench are arranged.
Abstract:
A surface-mountable semiconductor component and a method for producing the same are disclosed. In an embodiment the component includes an optoelectronic semiconductor chip, first and second contact elements and a molded body, wherein the chip includes a semiconductor body having a semiconductor layer sequence with an active region provided for producing and/or receiving electromagnetic radiation and arranged between a first semiconductor layer and a second semiconductor layer, wherein the first contact elements are electrically conductively connected to the first semiconductor layer and the second contact elements are electrically conductively connected to the second semiconductor layer, wherein the molded body at least partially encloses the optoelectronic semiconductor chip, wherein the semiconductor component includes a mounting face formed by a surface of the molded body, and wherein the first and second contact elements protrudes through the molded body in a region of the mounting face.
Abstract:
A semiconductor chip, an optoelectronic device including a semiconductor chip, and a method for producing a semiconductor chip are disclosed. In an embodiment the chip includes a semiconductor body with a first main surface and a second main surface arranged opposite to the first main surface, wherein the semiconductor body includes a p-doped sub-region, which forms part of the first main surface, and an n-doped sub-region, which forms part of the second main surface and a metallic contact element that extends from the first main surface to the second main surface and that is electrically isolated from one of the sub-regions.
Abstract:
A method of producing a semiconductor component includes providing a carrier with a first insulation layer, a mirror layer at least partially covered by the first insulation layer and a connection element, wherein the carrier includes an exposed planar mounting surface and the connection element extends through the first insulation layer to the mounting surface, providing a main body with a semiconductor body, a second insulation layer and a contact element to electrically contact the semiconductor body, wherein the main body has an exposed planar contact surface and the contact element extends through the second insulation layer to the contact surface, and connecting the main body to the carrier, wherein the planar contact surface and the planar mounting surface are brought together to form a connecting surface, and the contact element and the connection element electrically connect with one another.