Abstract:
Methods for forming vias in glass substrates by laser drilling and acid etching are disclosed. In one embodiment, a method forming a via in a glass substrate includes laser drilling the via through at least a portion of a thickness of the glass substrate from an incident surface of the glass substrate. The method further includes etching the glass substrate for an etching duration to increase a diameter of an incident opening of the via and applying ultrasonic energy to the glass substrate during at least a portion of the etching duration. The applied ultrasonic energy has a frequency between 40 kHz and 192 kHz.
Abstract:
Forming holes in a material includes focusing a pulsed laser beam into a laser beam focal line oriented along the beam propagation direction and directed into the material, the laser beam focal line generating an induced absorption within the material, the induced absorption producing a defect line along the laser beam focal line within the material, and translating the material and the laser beam relative to each other, thereby forming a plurality of defect lines in the material, and etching the material in an acid solution to produce holes greater than 1 micron in diameter by enlarging the defect lines in the material. A glass article includes a stack of glass substrates with formed holes of 1-100 micron diameter extending through the stack.
Abstract:
A method of laser processing a material to form a separated part. The method includes focusing a pulsed laser beam into a laser beam focal line, viewed along the beam propagation direction, directed into the material, the laser beam focal line generating an induced absorption within the material, the induced absorption producing a hole or fault line along the laser beam focal line within the material, and directing a defocused carbon dioxide (CO2) laser from a distal edge of the material over the plurality of holes to a proximal edge of the material.
Abstract:
The present invention relates to a process for cutting and separating interior contours in thin substrates of transparent materials, in particular glass. The method involves the utilization of an ultra-short pulse laser to form perforation or holes in the substrate, that may be followed by use of a CO2 laser beam to promote full separation about the perforated line.
Abstract:
Methods for forming vias in glass substrates by laser drilling and acid etching are disclosed. In one embodiment, a method forming a via in a glass substrate includes laser drilling the via through at least a portion of a thickness of the glass substrate from an incident surface of the glass substrate. The method further includes etching the glass substrate for an etching duration to increase a diameter of an incident opening of the via and applying ultrasonic energy to the glass substrate during at least a portion of the etching duration. The applied ultrasonic energy has a frequency between 40 kHz and 192 kHz.
Abstract:
A method for manufacturing an interposer equipped with a plurality of through-hole electrodes comprises a laser light converging step of converging a laser light at a sheet-like object to be processed made of silicon so as to form a modified region in the object; an etching step of anisotropically etching the object after the laser light converging step so as to advance etching selectively along the modified region and form a plurality of through holes in the object, each through hole being tilted with respect to a thickness direction of the object and having a rectangular cross section; an insulating film forming step of forming an insulating film on an inner wall of each through hole after the etching step; and a through-hole electrode forming step of inserting a conductor into the through holes so as to form the through-hole electrodes after the insulating film forming step; wherein the plurality of through holes are arranged such that the through holes aligning in the tilted direction are staggered in a direction perpendicular to the tilted direction as seen from a main face of the object.
Abstract:
The innovation involves the use of a laser to ablate a calculated microstructure or employ an adaptation of maskless photolithography using a Digital Micromirror Device to serve as a Spatial Light Modulator to embed a covert diffraction screen, holding encrypted information under transparent surfaces of plastics or glass substrates. One method includes the steps of fragmenting the calculated diffraction screen into at least first and second parts that are placed in separate locations. In this method the binary pattern in each of the parts includes information representing a respective portion of the original image and needs to be interrogated simultaneously to provide a meaningful visual output: each part by itself being incapable of generating any meaningful information. The fragmentation method allows a public-private key type of secure system platform.
Abstract:
A method for generating via-hole interconnections by laser ablation, wherein the layers to be removed and ablated from the substrate are essentially transparent to the laser radiation, but the laser light is absorbed in an underlying absorbing layer with a sufficiently high optical density at the laser wavelength.
Abstract:
A method of forming extremely small pores in a substrate may be used to produce, for example, an apparatus for the study of biological molecules, by providing a small pore in a piezoelectric substrate having electrodes, the latter that may be energized to change the pore dimensions.
Abstract:
A nanostructure forming method includes: preparing a substrate having an appropriate processing value; applying laser beam having a pulse duration of picosecond order or less to a planar surface oriented in a propagation direction of the laser beam and a direction perpendicular to a polarization direction (electric field direction) of the laser beam in the interior of the substrate at an irradiation intensity which is close to the appropriate processing value of the substrate; forming a structure-modified portion at a focus at which the laser beam is concentrated and in a region which is close to the focus; and forming a nanostructure formed of a nano-hole by selectively etching the structure-modified portion.