Abstract:
Blends of elastomer composites with unfilled or less highly filled elastomer reduces hysteresis without compromising reinforcement. Hysteresis may also be reduced by adjusting the compounding method.
Abstract:
A masterbatch of dried distillers solubles and at least one thermoplastic resin and processes for forming the masterbatch, wherein the dried distillers solubles is greater than 70% by weight of the masterbatch are generally disclosed. The masterbatch generally includes compounding a mixture of dried distillers solubles and at least one thermoplastic resin to form a flowable solid medium, wherein the dried distillers solubles is greater than 70% by weight percent based on a total weight of the mixture and has a moisture content of less than 25% by weight of the dried distillers solubles. The article can then be formed by melt processing, direct injection molding or extruding the flowable solid medium (masterbatch) with an additional amount of at least one thermoplastic resin to form the article, wherein the article comprises dried distillers solubles in an amount of less than 50 weight percent based on a total weight of the article.
Abstract:
The present invention relates to a flame retardant polymer composition comprising a crosslinkable terpolymer comprising ethylene monomer units, a silane group containing comonomer units and comonomer units comprising a polar group; a metal carbonate filler and a silicone fluid or gum; wherein the content of the comonomer units comprising a polar group is between 2 and 25 wt % of the terpolymer and the content of the silane group containing comonomer units is between 0.2 and 4 wt % of the terpolymer. The present invention is also directed to the process for the production of the polymer composition, to a cable and/or to an electrical device having a layer comprising said polymer composition, and uses thereof.
Abstract:
A highly loaded and well-dispersed masterbatch composition and process for making thereof from a split stream process. The masterbatch composition includes a colorant, a thermoplastic carrier, a metallocene polymer processing aid, and optionally an additive. The split stream may be formed of a primary feed and a secondary feed. The primary and second feeds are combined by at least one of the following: supplying the secondary feed in either the same feed port as the primary feed, in a stream located upstream the primary feed, in a stream located downstream the primary feed, or a combination thereof.
Abstract:
The present invention provides a composition comprising cellulose and a dispersant, the composition being capable of improving the dispersibility of cellulose in resin. More specifically, the present invention provides a composition comprising cellulose and a dispersant, the dispersant comprising a resin affinity segment A and a cellulose affinity segment B and having a block copolymer structure or gradient copolymer structure.
Abstract:
A polymer composition formed from a polyarylene sulfide matrix that constitutes a majority of the polymer content of the composition is provided. Although polyarylene sulfides are not typically capable of laser activation, particularly at such a high content of the polymer composition, the present inventor has nevertheless discovered that the resulting composition can still be readily activated with one or more conductive elements using a laser direct structuring process. This is accomplished, in part, by dispersing a combination of a condensation polymer and laser activatable additive within the polyarylene sulfide matrix.
Abstract:
The present invention provides a polyester-based resin composition containing: a resin component which contains 80 to 98 mass % of polyester resin (A) including aromatic dicarboxylic acid units and diol units, and 20 to 2 mass % of polyamide resin (B) including diamine units and dicarboxylic acid units, the diamine units containing 70 mol % or more m-xylylenediamine units and the dicarboxylic acid units containing 70 mol % or more α,ω-aliphatic dicarboxylic acid units; and 0.005 to 0.1 parts by mass of a specific epoxy-functional polymer (C) with respect to 100 parts by mass of the resin component.
Abstract:
Provided are a rubber composition in which microfibrillated plant fibers are sufficiently uniformly dispersed to improve tire performance requirements in a balanced manner, and a pneumatic tire formed from the rubber composition. The present invention relates to a rubber composition formed from a masterbatch containing a rubber latex and microfibrillated plant fibers, the masterbatch being obtained by stirring the microfibrillated plant fibers in a solvent with a circulation type or continuous homogenizer and mixing the resulting microfibrillated plant fiber solution with the rubber latex and a cationic polymer, the microfibrillated plant fibers having a mean fiber length of 10 to 150 μm, the microfibrillated plant fiber solution containing 0.1 to 2.0% by mass of the microfibrillated plant fibers, and the amount of the cationic polymer being 0.01 to 5 parts by mass per 100 parts by mass of the rubber component of the rubber latex.
Abstract:
[Object] To provide a resin composition with excellent mold releasability and blocking resistance.[Solution] A resin composition containing a 4-methyl-1-pentene polymer includes 0.01 to 10 parts by mass of a 4-methyl-1-pentene polymer (B) per 100 parts by mass of at least one resin (A) selected from the group consisting of thermoplastic resins and thermosetting resins, wherein the 4-methyl-1-pentene polymer (B) has (B1) an intrinsic viscosity [η] of 0.01 or more but less than 0.50 dl/g measured at 135° C. in a decalin solvent.
Abstract translation:提供具有优异的脱模性和抗粘连性的树脂组合物。 [解决方案]含有4-甲基-1-戊烯聚合物的树脂组合物,相对于所选择的至少一种树脂(A),相对于每100质量份的所述4-甲基-1-戊烯类聚合物(B),含有0.01〜10质量份的4-甲基-1-戊烯类聚合物 由热塑性树脂和热固性树脂组成的组合物,其中4-甲基-1-戊烯聚合物(B)的特性粘度[ηe]为135°时测得的0.01或更大但小于0.50dl / g C.在十氢化萘溶剂中。
Abstract:
Epoxidised natural rubber [ENR] based vulcanised-blends with two different types of electrical conductive filler (i.e. conductive grade-carbon black and intrinsically electrical conductive polymer) may be produced respectively by using either internal mechanical mixing method or open milling method or the combination of the two methods. All these ENR based vulcanised-blends show high consistent reversible electrical behaviour under the tensile straining process. They also exhibit useful mechanical property ties with tensile strengths up to 28.0 MPa, elongations at break up to 800.0% and Dunlop rebound resiliencies up to 55.0%. The lower the rebound resilience, the better the damping property and shock absorption ability for the ENR based vulcanised-blends. As a result, these ENR based vulcanised-blends are ideal to be used for manufacturing flexible sensors that may correspond to the tensile straining process.