Abstract:
A semiconductor laser device has an active layer, a first cladding layer formed on the active layer, and a second cladding layer formed on the first cladding layer. The first cladding layer is doped with magnesium as a first impurity to have a high resistivity. The second cladding layer is doped with zinc as a second impurity to have a resistivity lower than the resistivity of the first cladding layer.
Abstract:
A monolithic apparatus has a laser optical cavity. The laser optical cavity has a multi-layer structure that includes a first active semiconductor multi-layer and a second semiconductor multi-layer. The second semiconductor multi-layer is located laterally adjacent to the first active semiconductor multi-layer. The first active semiconductor multi-layer includes a sequence of quantum well structures that produce light of a lasing frequency in response to being electrically pumped. The second semiconductor multi-layer includes a sequence of quantum well structures and is configured to both absorb light of the lasing frequency and produce one of parametric light and harmonic light in response to absorbing light of the lasing frequency.
Abstract:
An optoelectronic device having one or more DBR mirrors having a low voltage drop across the mirror layers and a high reflectivity for emission at a nominal wavelength of 1300 nm below, at and above room temperature. The low resistance DBR may be used as a top output mirror of a tunnel junction VCSEL that reduces resistance and optical losses by reducing the amount of p-type material within the device.
Abstract:
Selectively oxidized vertical cavity lasers emitting at about 1290 nm using InGaAsN quantum wells that operate continuous wave below, at and above room temperature are reported. The lasers employ a semi-insulating GaAs substrate for reduced capacitance, high quality, low resistivity AlGaAs DBR mirror structures, and a strained active region based on InGaAsN. In addition, the design of the VCSEL reduces free carrier absorption of 1.3 nullm light in the p-type materials by placing relatively higher p-type dopant concentrations near standing wave nulls.
Abstract:
A semiconductor optical device with improved optical gain and enhanced switching characteristics. The semiconductor optical device includes positive and negative electrodes for providing holes and electrons, respectively. The semiconductor optical device also includes an active layer between the positive and negative electrodes. The active layer includes a multiple quantum well structure having p-type quantum well layers and barrier layers. The quantum well layers are doped with an impurity that diffuses less than zinc so that trapping holes are produced and excessive electrons contributing no light emission are quenched by the trapping holes. The impurity can be beryllium, magnesium, or carbon.
Abstract:
Compound semiconductor light emitting devices capable of suppressing the surface state density on the facets of semiconductor light emitting devices such as semiconductor lasers for a long time and stable operating even when the passivation layer diffuses can be easily obtained. Compound semiconductor light emitting devices with an emission wavelength of &lgr; (nm) wherein a first conduction type of clad layer, an active layer and a second conduction type of clad layer are grown on a substrate and two facets are opposite to each other so as to form a cavity, characterized in that said active layer is transparent to the emission wavelength in the vicinities of the facets and that the surfaces of the first conduction type of clad layer, active layer and second conduction type of clad layer forming said facets are each coated with a passivation layer.
Abstract:
A radiation-emitting semiconductor component has a high p-type conductivity. The semiconductor body of the component includes a substrate, preferably an SiC-based substrate, on which a plurality of GaN-based layers have been formed. The active region of these layers is arranged between at least one n-conducting layer and a p-conducting layer. The p-conducting layer is grown in tensile-stressed form. The p-doping that is used is preferably Mg.
Abstract:
A semiconductor laser, optical module using a semiconductor laser, and optical communication system using a semiconductor laser. The semiconductor laser has an active layer between two semiconductor layers and different conduction types and current block layers surrounding the active layer. One of the semiconductor layers has a first growth layer and a second growth layer formed on the first growth layer by a re-growth process after a growth process for the first growth layer. The doping concentration of the first growth layer, in the region of the interface with the second growth layer, is in the range of between 1.5 to 5 times the doping concentration of the second growth layer.
Abstract:
A modulation doped multiple quantum well structure having a steep Zn profile of several nm by the balance between an increase in a Zn concentration and a decrease in Zn diffusion by using metal organic vapor phase epitaxy using Zn, in which an InGaAlAs quaternary alloy is used and the Zn concentration and the range for crystal composition are defined to equal to or less than the critical concentration at which Zn diffuses abruptly in each of InGaAlAs compositions.
Abstract:
A surface emitting semiconductor laser device has a pair of DBRs having opposite conductivity types, a pair of cladding layers having opposite conductivity types, an undoped active layer and a current confinement layer. The boundary between the p-type region and the n-type region of the laser device resides within the active layer, thereby reducing the operating voltage of the laser device.