Abstract:
An assembly includes an integrated circuit chip and a plate with at least one heat removal channel arranged between the chip and the plate. Metal sidewalls are formed to extend from one surface of the chip to an opposite surface of the plate. The assembly is encapsulated in a body that includes an opening extending to reach the channel. The plate may be one of an interposer, an integrated circuit chip, a support of surface-mount type, or a metal plate.
Abstract:
An electronic device has a rear plate that includes a substrate rear layer, a substrate front layer and a dielectric intermediate layer between the substrate rear and front layers. An electronic structure is on the substrate front layer and includes electronic components and electrical connections. The substrate rear layer includes a solid local region and a hollowed-out local region. The hollowed-out local region extends over all of the substrate rear layer. The substrate rear layer does not cover at least one local zone of the dielectric intermediate layer corresponding to the hollowed-out local region.
Abstract:
A wireless unit includes a first motion sensitive device; communications circuitry for wirelessly communicating with a further wireless unit; and a processing device configured to compare at least one first motion vector received from the first motion sensitive device with at least one second motion vector received from a second motion sensitive device of the further wireless unit.
Abstract:
A spectral filter includes an assembly of filtering cells. Each cell has a same nanostructured pattern and a preferential direction of the pattern. This preferential direction is, for each cell, oriented approximately radially with respect to a single point of the spectral filter. Alternatively, this preferential direction is, for each cell, oriented approximately ortho-radially with respect to the single point of the spectral filter. The single point may be a center point. Alternatively, the single point may correspond to an optical axis of a lens element associated with the spectral filter.
Abstract:
Elongated fins of a first semiconductor material are insulated from and formed over an underlying substrate layer (of either SOI or bulk type). Elongated gates of a second semiconductor material are then formed to cross over the elongated fins at channel regions, and the gate side walls are covered by sidewall spacers. A protective material is provided to cover the underlying substrate layer and define sidewall spacers on side walls of the elongated fins between the elongated gates. The first semiconductor material and insulating material of the elongated fins located between the protective material sidewall spacers (but not under the elongated gates) is removed to form trenches aligned with the channel regions. Additional semiconductor material is then epitaxially grown inside each trench between the elongated gates to form source-drain regions adjacent the channel regions formed by the elongated fins of the first semiconductor material located under the elongated gates.
Abstract:
An E/O phase modulator may include a waveguide having an insulating substrate, a single-crystal silicon strip and a polysilicon strip of a same thickness and doped with opposite conductivity types above the insulating substrate, and an insulating interface layer between the single-crystal silicon strip and polysilicon strip. Each of the single-crystal silicon strip and polysilicon strip may be laterally continued by a respective extension, and a respective electrical contact coupled to each extension.
Abstract:
An arrayed waveguide grating multiplexer/demultiplexer includes an array of optical waveguides ordered in sequence from a shortest waveguide up to a longest waveguide, and identical phase shifters configured to be controlled by a same control signal. Each phase shifter increases/decreases an optical path of an optical waveguide by the same quantity based on the control control signal.
Abstract:
An image sensor device may include an array of image sensing pixels arranged in rows and columns. Each image sensing pixel may include an image sensing photodiode, a first source follower transistor coupled to the image sensing photodiode, and a switch coupled to the image sensing photodiode. Each image sensor device may include a second source follower transistor coupled to the switch, and a row selection transistor coupled to the first and second source follower transistors.
Abstract:
An image sensor device may include an array of image sensing pixels arranged in rows and columns. Each image sensing pixel may include an image sensing photodiode, a first source follower transistor coupled to the image sensing photodiode, and a switch coupled to the image sensing photodiode. Each image sensor device may include a second source follower transistor coupled to the switch, and a row selection transistor coupled to the first and second source follower transistors.
Abstract:
A method is for aligning an electro-optic device. The method may include initially positioning an optical fiber array adjacent to optical grating couplers, and actively aligning the optical fiber array relative to the optical grating couplers in a yaw direction and a roll direction to determine a yaw and roll alignment at a first operating wavelength. The method may include actively aligning the optical fiber array relative to optical grating couplers in an x direction and a y direction to determine a first x and y alignment at the first operating wavelength, determining a second operating wavelength, and actively aligning the optical fiber array again relative to the optical grating couplers in the x direction and y direction to determine a second x and y alignment at the second operating wavelength.