Abstract:
Methods and apparatus for chemical delivery are provided herein. In some embodiments, a first reservoir holds a first volume of fluid, receives a carrier gas, and outputs the carrier gas together with vapor derived from the first volume of fluid. A second reservoir holds a second volume of fluid and is capable of delivering a part of the second volume of fluid to the first reservoir. A self-regulating tube extends from the first reservoir to a region above the second volume of fluid in the second reservoir.
Abstract:
Provided are methods for etching films comprising transition metals. Certain methods involve activating a substrate surface comprising at least one transition metal, wherein activation of the substrate surface comprises exposing the substrate surface to heat, a plasma, an oxidizing environment, or a halide transfer agent to provide an activated substrate surface; and exposing the activated substrate surface to a reagent comprising a Lewis base or pi acid to provide a vapor phase coordination complex comprising one or more atoms of the transition metal coordinated to one or more ligands from the reagent. Certain other methods provide selective etching from a multi-layer substrate comprising two or more of a layer of Co, a layer of Cu and a layer of Ni.
Abstract:
Films comprising Aluminum, carbon and a metal, wherein the aluminum is present in an amount greater than about 16% by elemental content and the film has less than about 50% carbon. Methods of forming the films comprise exposing a substrate to a metal halide precursor, purging the metal halide precursor from the processing chamber and then exposing the substrate to an alkyl aluminum precursor and an alane precursor, either sequentially or simultaneously. The alane precrursor comprises an amine-alane and a stabilizing amine selected from one or more of diemthylcyclohexylamine or dicyclomethylhexylamine.
Abstract:
Methods for deposition of elemental metal films on surfaces using metal coordination complexes comprising nitrogen-containing ligands are provided. Also provided are nitrogen-containing ligands useful in the methods of the invention and metal coordination complexes comprising these ligands.
Abstract:
Provided are methods for selective deposition. Certain methods describe providing a first substrate surface; providing a second substrate surface; depositing a first layer of film over the first and second substrate surfaces, wherein the deposition has an incubation delay over the second substrate surface such that the first layer of film over the first substrate surface is thicker than the first layer of film deposited over the second substrate surface; and etching the first layer of film over the first and second substrate surfaces, wherein the first layer of film over the second substrate surface is at least substantially removed, but the first layer of film over the first substrate is only partially removed.
Abstract:
Provided are methods for the deposition of films comprising SiCN. Certain methods involve exposing a substrate surface to a silicon precursor, wherein the silicon precursor is halogenated with Cl, Br or I, and the silicon precursor comprises a halogenated silane, a halogenated carbosilane, an halogenated aminosilane or a halogenated carbo-sillyl amine. Then, the substrate surface can be exposed to a nitrogen-containing plasma or a nitrogen precursor and densification plasma.
Abstract:
Methods of depositing pure metal and aluminum alloy metal films. Certain methods comprises contacting a substrate surface with first and second precursors, the first precursor comprising an aluminum precursor selected from dimethylaluminum hydride, alane coordinated to an amine, and a compound having a structure represented by: wherein R is a C1-C6 alkyl group, and the second precursor comprising a metal halide. Other methods relate to sequentially exposing a substrate to a first and second precursor, the first precursor comprising an aluminum precursor as described above, and the second precursor comprising Ti(NR′2)4 or Ta(NR′2)5, wherein R′ is an alkyl, alkenyl, alkynyl, keto or aldehyde group.
Abstract:
Described herein is a method for selectively cleaning and/or etching a sample. The method includes selectively forming a film in a trench of a substrate such that the trench may be selectively etched. A polymer film is deposited on the bottom surface of the trench without being deposited on the side wall. A second film is selectively formed in the trench without forming the second film on the polymer film. The polymer is then removed from the bottom surface of the trench and then etching is performed on the bottom surface of the trench using an etch chemistry, wherein the second film protects the side wall from being etched.
Abstract:
Exemplary methods of semiconductor processing, such as methods of depositing a molybdenum-containing material on a substrate, may include providing a molybdenum-containing precursor to a processing region of a semiconductor processing chamber in which the substrate is located. The molybdenum-containing precursor may include a molybdenum complex according to Compound I: R may be methyl or ethyl, R′ may be methyl or ethyl, R″ may be methyl, ethyl, or propyl, and n may be equal to 1 or 2. Contacting the substrate with the molybdenum-containing precursor may deposit the molybdenum-containing material on the substrate.
Abstract:
Methods for selectively depositing on metallic surfaces are disclosed. Some embodiments of the disclosure utilize a hydrocarbon having at least two functional groups selected from alkene, alkyne, ketone, hydroxyl, aldehyde, or combinations thereof to form a self-assembled monolayer (SAM) on metallic surfaces.